{"title":"Global solvability for the heat equations in two half spaces and an interface","authors":"Hajime Koba","doi":"10.1016/j.jmaa.2025.130050","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the existence of a global-in-time strong solution to the heat equations in the two half spaces <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>−</mo></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>)</mo></math></span>, and the interface <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>(</mo><mo>≅</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>. We introduce and study some function spaces in the two half spaces and the interface. We apply our function spaces and the maximal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-regularity for Hilbert space-valued functions to show the existence of a local-in-time strong solution to our heat equations. By using an energy equality of our heat system, we prove the existence of a unique global-in-time strong solution to the system with large initial data. The key idea of constructing strong solutions to our system is to make use of nice properties of the heat semigroups and kernels for <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>−</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. In Appendix, we derive our heat equations in the two half spaces and the interface from an energetic point of view.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130050"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008315","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers the existence of a global-in-time strong solution to the heat equations in the two half spaces , , and the interface . We introduce and study some function spaces in the two half spaces and the interface. We apply our function spaces and the maximal -regularity for Hilbert space-valued functions to show the existence of a local-in-time strong solution to our heat equations. By using an energy equality of our heat system, we prove the existence of a unique global-in-time strong solution to the system with large initial data. The key idea of constructing strong solutions to our system is to make use of nice properties of the heat semigroups and kernels for , , and . In Appendix, we derive our heat equations in the two half spaces and the interface from an energetic point of view.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.