Global solvability for the heat equations in two half spaces and an interface

IF 1.2 3区 数学 Q1 MATHEMATICS
Hajime Koba
{"title":"Global solvability for the heat equations in two half spaces and an interface","authors":"Hajime Koba","doi":"10.1016/j.jmaa.2025.130050","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the existence of a global-in-time strong solution to the heat equations in the two half spaces <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>−</mo></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>)</mo></math></span>, and the interface <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>(</mo><mo>≅</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>. We introduce and study some function spaces in the two half spaces and the interface. We apply our function spaces and the maximal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-regularity for Hilbert space-valued functions to show the existence of a local-in-time strong solution to our heat equations. By using an energy equality of our heat system, we prove the existence of a unique global-in-time strong solution to the system with large initial data. The key idea of constructing strong solutions to our system is to make use of nice properties of the heat semigroups and kernels for <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>−</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. In Appendix, we derive our heat equations in the two half spaces and the interface from an energetic point of view.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130050"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008315","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the existence of a global-in-time strong solution to the heat equations in the two half spaces R+3(=R2×(0,)), R3(=R2×(,0)), and the interface R2×{0}(R2). We introduce and study some function spaces in the two half spaces and the interface. We apply our function spaces and the maximal Lp-regularity for Hilbert space-valued functions to show the existence of a local-in-time strong solution to our heat equations. By using an energy equality of our heat system, we prove the existence of a unique global-in-time strong solution to the system with large initial data. The key idea of constructing strong solutions to our system is to make use of nice properties of the heat semigroups and kernels for R+3, R3, and R2. In Appendix, we derive our heat equations in the two half spaces and the interface from an energetic point of view.
两个半空间和界面热方程的全局可解性
本文考虑了两个半空间R+3(= r2x(0,∞))、R - 3(= r2x(−∞,0))和界面r2x {0}(=R2)上热方程的整体时强解的存在性。介绍并研究了两个半空间中的函数空间及其界面。我们应用函数空间和Hilbert空间值函数的极大lp正则性来证明热方程的局部时强解的存在性。利用热系统的能量等式,证明了具有大初始数据的热系统存在唯一的全局实时强解。构造系统强解的关键思想是利用R+3, R - 3和R2的热半群和核的良好性质。在附录中,我们从能量的角度推导了两个半空间和界面中的热方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信