Gemma De les Coves , Mirte van der Eyden , Tim Netzer
{"title":"Beyond operator systems","authors":"Gemma De les Coves , Mirte van der Eyden , Tim Netzer","doi":"10.1016/j.jmaa.2025.130102","DOIUrl":"10.1016/j.jmaa.2025.130102","url":null,"abstract":"<div><div>Operator systems connect operator algebra, free semialgebraic geometry and quantum information theory. In this work we generalize operator systems and many of their theorems. While positive semidefinite matrices form the underlying structure of operator systems, our work shows that these can be promoted to far more general structures. For instance, we prove a general extension theorem which unifies the well-known homomorphism theorem, Riesz' extension theorem, Farkas' lemma and Arveson's extension theorem. On the other hand, the same theorem gives rise to new vector-valued extension theorems, even for invariant maps, when applied to other underlying structures. We also prove generalized versions of the Choi–Kraus representation, Choi–Effros theorem, duality of operator systems, factorizations of completely positive maps, and more, leading to new results even for operator systems themselves. In addition, our proofs are shorter and simpler, revealing the interplay between cones and tensor products, captured elegantly in terms of star autonomous categories. This perspective gives rise to new connections between group representations, mapping cones and topological quantum field theory, as they correspond to different instances of our framework and are thus siblings of operator systems. <em>A short video abstract can be found</em> <span><span><em>here</em></span><svg><path></path></svg></span></div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130102"},"PeriodicalIF":1.2,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145236438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Planar vector fields in the kernel of a 1–form","authors":"Stavros Anastassiou","doi":"10.1016/j.jmaa.2025.130092","DOIUrl":"10.1016/j.jmaa.2025.130092","url":null,"abstract":"<div><div>We classify, up to a natural equivalence relation, vector fields of the plane which belong to the kernel of a 1–form. This form can be closed, in which case the vector fields are integrable, or not, in which case the differential of the form defines a, possibly singular, symplectic form. In every case, we provide a fairly complete list of local models for such fields and construct their transversal unfoldings. Thus, the local bifurcations of vector fields of interest can be studied, among them being the integrable fields of the plane.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130092"},"PeriodicalIF":1.2,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145216496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global analysis on a nonlinear diffusion system with fear effect, protection zone and Ivlev functional response","authors":"Daoxin Qiu , Yunfeng Jia , Shengqiang Liu","doi":"10.1016/j.jmaa.2025.130096","DOIUrl":"10.1016/j.jmaa.2025.130096","url":null,"abstract":"<div><div>This paper investigates a novel nonlinear diffusive Ivlev-type predator-prey system that synergistically integrates fear effect and protection zone. By analyzing bifurcation structure of positive steady-states emanating from semi-trivial steady-states, and employing Leray-Schauder degree theory, we characterize how these combined factors dictate the multiplicity, uniqueness and stability of positive steady-states. Additionally, we examine the asymptotic behaviors of positive steady-states induced by the predator growth rate and prey diffusion rate. The long-term dynamical behaviors of the system are finally revealed. The findings reveal that the interplay of fear effect, protection zone and Ivlev-type interaction term generates unprecedented dynamical regimes in traditional models with fewer ecological factors, and offers both theoretical insights into complex ecosystems and practical guidance for conservation strategies. Biologically speaking, such joint effects help to showcase their synergistic roles in shaping population dynamics and ecological stability.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130096"},"PeriodicalIF":1.2,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On generalized limits and ultrafilters","authors":"Paolo Leonetti , Cihan Orhan","doi":"10.1016/j.jmaa.2025.130090","DOIUrl":"10.1016/j.jmaa.2025.130090","url":null,"abstract":"<div><div>Given an ideal <span><math><mi>I</mi></math></span> on <em>ω</em>, we denote by <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> the family of positive normalized linear functionals on <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> which assign value 0 to all characteristic sequences of sets in <span><math><mi>I</mi></math></span>. We show that every element of <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> is a Choquet average of certain ultrafilter limit functionals. Also, we prove that the diameter of <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> is 2 if and only if <span><math><mi>I</mi></math></span> is not maximal, and that the latter claim can be considerably strengthened if <span><math><mi>I</mi></math></span> is meager. Lastly, we provide several applications: for instance, recovering a result of Freedman (1981) <span><span>[19]</span></span>, we show that the family of bounded sequences for which all functionals in <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>I</mi><mo>)</mo></math></span> assign the same value coincides with the closed vector space of bounded <span><math><mi>I</mi></math></span>-convergent sequences.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130090"},"PeriodicalIF":1.2,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New characterizations of Muckenhoupt Ap distance weights for p > 1","authors":"Ignacio Gómez Vargas","doi":"10.1016/j.jmaa.2025.130091","DOIUrl":"10.1016/j.jmaa.2025.130091","url":null,"abstract":"<div><div>We characterize the collection of sets <span><math><mi>E</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for which there exists <span><math><mi>θ</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> such that the distance weight <span><math><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>dist</mi><mspace></mspace><msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>θ</mi></mrow></msup></math></span> belongs to the Muckenhoupt class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>. These sets exhibit a certain balance between the small-scale and large-scale pores that constitute their complement—a property we show to be more general than the so-called weak porosity condition, which in turn, and according to recent results, characterizes the sets with associated distance weights in the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> case. Furthermore, we verify the agreement between this new characterization and the properties of known examples of distance weights, that are either <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> weights or merely doubling weights, by means of a probabilistic approach that may be of interest by itself.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130091"},"PeriodicalIF":1.2,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-bump solutions of the magnetic p-Laplacian Schrödinger equations with critical and logarithmic nonlinearities","authors":"Lulu Wei, Yueqiang Song","doi":"10.1016/j.jmaa.2025.130093","DOIUrl":"10.1016/j.jmaa.2025.130093","url":null,"abstract":"<div><div>This paper focuses on the following magnetic <em>p</em>-Laplacian Schrödinger equations with critical and logarithmic nonlinearities in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>:<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>A</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>(</mo><mi>λ</mi><mi>Z</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>β</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mi>log</mi><mo></mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>=</mo><mtext>div</mtext><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>+</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>∇</mi><mi>u</mi><mo>+</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>)</mo><mo>)</mo></math></span> denotes the magnetic <em>p</em>-Laplacian, the magnetic potential <span><math><mi>A</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></math></span> and the parameters <span><math><mi>λ</mi><mo>,</mo><mi>β</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>Z</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> are the nonnegative continuous functions, <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span> is the Sobolev critical exponent. Applying variational methods, multiple multi-bump solutions for the above equation have been obtained. More precisely, our findings demonstrate that if the zero set of <em>Z</em> possesses several isolated connected components <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><m","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130093"},"PeriodicalIF":1.2,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence of optimal periodic strategies in a model with nonlocal spatiotemporal dispersal","authors":"Paola Rubbioni","doi":"10.1016/j.jmaa.2025.130095","DOIUrl":"10.1016/j.jmaa.2025.130095","url":null,"abstract":"<div><div>In this paper, we investigate a control problem for a nonlinear integro-differential system incorporating both spatial and temporal nonlocal terms, subject to periodic condition in time. The equation, derived from population dynamics, describes the evolution of population density under growth, migration, and memory effects. The control set is feedback-based and spatially nonlocal, depending on a weighted integral of the state. We establish the existence of controlled trajectories that approximate the infimum or supremum of a cost functional with arbitrary precision. Moreover, under additional regularity assumptions on the bounding functions of the control set, we provide the existence of truly optimal controlled trajectories. The analysis employs topological methods in nonlinear analysis and tailored techniques to address temporal nonlocalities.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130095"},"PeriodicalIF":1.2,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-frequency stability estimates for the inverse boundary value problems for the Schrödinger and the biharmonic operator with constant attenuation on certain bounded domains","authors":"Anupam Pal Choudhury, Ajith Kumar T","doi":"10.1016/j.jmaa.2025.130094","DOIUrl":"10.1016/j.jmaa.2025.130094","url":null,"abstract":"<div><div>We explore high-frequency stability estimates for the determination of the zeroth-order perturbation of the Schrödinger and the biharmonic operators with constant attenuation from the partial Dirichlet-to-Neumann map when part of the boundary is inaccessible and flat. The results are derived under mild regularity assumptions on the potential and extend the results of <span><span>[21]</span></span> and <span><span>[28]</span></span> in the presence of attenuation in such domains.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130094"},"PeriodicalIF":1.2,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the domain and growth rate of the solutions to linear systems of moment differential equations","authors":"Antonio Cáceres, Alberto Lastra","doi":"10.1016/j.jmaa.2025.130097","DOIUrl":"10.1016/j.jmaa.2025.130097","url":null,"abstract":"<div><div>The domain of definition of the solutions to linear systems of moment differential equations is provided in terms of the growth of the sequence of moments. The growth rate of the solutions near infinity is described for systems admitting entire solutions: first, in terms of the associated function related to a weight sequence; second in terms of the order and type of an entire function. Further information is detailed when considering logarithmic order and types.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130097"},"PeriodicalIF":1.2,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finsler N-Laplace equations with critical exponential nonlinearity","authors":"Monti Das , Sweta Tiwari","doi":"10.1016/j.jmaa.2025.130089","DOIUrl":"10.1016/j.jmaa.2025.130089","url":null,"abstract":"<div><div>In this article, we investigate some anisotropic equations involving the Finsler <em>N</em>-Laplace operator <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub></math></span>, with Trudinger-Moser type critical exponential nonlinearity which involves the anisotropic norm. More precisely, we establish the existence of nontrivial solutions to the problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mspace></mspace><mtext> in </mtext><mi>Ω</mi><mo>,</mo></math></span></span></span> on a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, and to the anisotropic quasilinear Schrödinger problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></math></span></span></span> Here the nonlinearities <em>f</em> and <em>g</em> exhibit critical exponential-type growth, and the potential <em>V</em> is a continuous function that retains the compactness of the associated Sobolev embedding into a larger class of Lebesgue spaces under suitable assumptions. We obtain the existence results by employing the anisotropic Trudinger-Moser inequality, mountain-pass theorem, and Ekeland's variational principle.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130089"},"PeriodicalIF":1.2,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}