Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
Global boundedness in a chemotaxis-Stokes system with nonlinear diffusion mechanism involving gradient dependent flux limitation and indirect signal production 具有梯度依赖通量限制和间接信号产生的非线性扩散机制的趋化- stokes系统的全局有界性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-24 DOI: 10.1016/j.jmaa.2025.129621
Yuxin Yan, Zhongping Li
{"title":"Global boundedness in a chemotaxis-Stokes system with nonlinear diffusion mechanism involving gradient dependent flux limitation and indirect signal production","authors":"Yuxin Yan,&nbsp;Zhongping Li","doi":"10.1016/j.jmaa.2025.129621","DOIUrl":"10.1016/j.jmaa.2025.129621","url":null,"abstract":"<div><div>This paper is concerned with the Keller-Segel-Stokes system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>f</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>v</mi><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>w</mi><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>n</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> under no-flux/no-flux/no-flux/Dirichlet boundary conditions in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, with given suitably regular functions <em>f</em> and <em>ϕ</em>, as well as <em>f</em> satisfies <span><math><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>⩽</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>ξ</mi><mo>⩾</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>. It is shown that for all suitably regular initial data the associated initial-boundary value problem possesses at least one globally bounded weak solution provided <span><math><mn>9</mn><mi>m</mi><mo>+</mo><mn>4</mn><mi>α</mi><mo>&gt;</mo><mn>10</mn></math></span>. Our result strictly proved that the volume saturation effect is indeed conductive to the global existence and boundedness of the three-dimensional Keller-Segel-Stokes system.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129621"},"PeriodicalIF":1.2,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The numerical study of a continuous Petrov-Galerkin method for the nonlinear convection-diffusion equation 非线性对流扩散方程的连续Petrov-Galerkin方法的数值研究
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-24 DOI: 10.1016/j.jmaa.2025.129617
Zhihui Zhao, Hong Li, Wei Gao
{"title":"The numerical study of a continuous Petrov-Galerkin method for the nonlinear convection-diffusion equation","authors":"Zhihui Zhao,&nbsp;Hong Li,&nbsp;Wei Gao","doi":"10.1016/j.jmaa.2025.129617","DOIUrl":"10.1016/j.jmaa.2025.129617","url":null,"abstract":"<div><div>This paper aims to use the continuous Petrov-Galerkin (CPG) method to study the nonlinear convection-diffusion equation. This method discretizes the time and space variables simultaneously with the finite element (FE) method, thus it is convenient to derive high order accuracy in time and space and has better numerical stability. In addition, the Petrov-Galerkin method is employed to approximate the model problem, which can reduce the computational scale in comparison with the usual Galerkin method. We demonstrate the existence and uniqueness of the CPG solution and give the convergence analysis without the constraints of spatial grid parameter. Several numerical tests are performed to access the validity and the numerical stability of the CPG method. Also, numerical tests illustrate that the CPG method is superior to the standard finite element (SFE) method and the continuous Galerkin (CG) method in solving the nonlinear convection-diffusion equation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129617"},"PeriodicalIF":1.2,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy decay estimates for the wave equation with supercritical nonlinear damping 具有超临界非线性阻尼的波动方程的能量衰减估计
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-24 DOI: 10.1016/j.jmaa.2025.129622
Alain Haraux , Louis Tebou
{"title":"Energy decay estimates for the wave equation with supercritical nonlinear damping","authors":"Alain Haraux ,&nbsp;Louis Tebou","doi":"10.1016/j.jmaa.2025.129622","DOIUrl":"10.1016/j.jmaa.2025.129622","url":null,"abstract":"<div><div>We consider a damped wave equation in a bounded domain. The damping is nonlinear and is homogeneous of degree <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span> with <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>. First, we show that the energy of the strong solution in the supercritical case decays as a negative power of <em>t</em>; the rate of decay is the same as in the subcritical or critical cases, provided that the space dimension does not exceed ten. Next, relying on a new differential inequality, we show that if the initial displacement is further required to lie in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, then the energy of the corresponding weak solution decays logarithmically in the supercritical case. Those new results complement those in the literature and open an important breach in the unknown land of super-critical damping mechanisms.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129622"},"PeriodicalIF":1.2,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transmutation operator for a radial Vekua equation in quaternion analysis 四元数分析中径向Vekua方程的嬗变算子
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-23 DOI: 10.1016/j.jmaa.2025.129613
Doan Cong Dinh
{"title":"Transmutation operator for a radial Vekua equation in quaternion analysis","authors":"Doan Cong Dinh","doi":"10.1016/j.jmaa.2025.129613","DOIUrl":"10.1016/j.jmaa.2025.129613","url":null,"abstract":"<div><div>The theory of the Vekua equation in complex analysis has been extended to higher dimensions with significant applications in mathematical physics. In quaternion and Clifford analysis, solutions of the Vekua equations are commonly represented using Cauchy integrals and Taylor series. Additionally, transmutation operators serve as a powerful tool for constructing these solutions. In this paper, we introduce a radial Vekua equation in quaternion analysis <span><math><mi>D</mi><mi>u</mi><mo>=</mo><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mi>u</mi></math></span>, where <span><math><mi>r</mi><mo>=</mo><mo>|</mo><mi>x</mi><mo>|</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>. We employ a newly modified normalized system of functions with respect to the Dirac operator <em>D</em> to represent its solutions via a transmutation operator using monogenic functions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129613"},"PeriodicalIF":1.2,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delayed displacement feedback stabilization of two coupled wave equations with joint anti-damping 联合抗阻尼耦合波动方程的延迟位移反馈镇定
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-23 DOI: 10.1016/j.jmaa.2025.129616
Yi-Ning Wang, Jun-Min Wang
{"title":"Delayed displacement feedback stabilization of two coupled wave equations with joint anti-damping","authors":"Yi-Ning Wang,&nbsp;Jun-Min Wang","doi":"10.1016/j.jmaa.2025.129616","DOIUrl":"10.1016/j.jmaa.2025.129616","url":null,"abstract":"<div><div>In this paper, we consider the stabilization problem of two coupled wave equations with joint anti-damping. By designing a novel transformation, the wave system is transformed into a system with damping term at the joint point, and the feedback controller with delayed displacement is designed. The invertibility of the transformation is proven through the mathematical induction. Furthermore, by using the Riesz basis method and the PDE approach, the well-posedness and exponential stability of the non-dissipative closed-loop system are established. Simulation results are presented to verify the effectiveness of the feedback control law.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129616"},"PeriodicalIF":1.2,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence analysis of a fully discrete finite element method for the EHD system EHD系统全离散有限元法的收敛性分析
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-18 DOI: 10.1016/j.jmaa.2025.129592
Xiaodi Zhang , Ke Zhang , Zexi Huangfu
{"title":"Convergence analysis of a fully discrete finite element method for the EHD system","authors":"Xiaodi Zhang ,&nbsp;Ke Zhang ,&nbsp;Zexi Huangfu","doi":"10.1016/j.jmaa.2025.129592","DOIUrl":"10.1016/j.jmaa.2025.129592","url":null,"abstract":"<div><div>This paper develops and analyzes a fully discrete finite element method for the electrohydrodynamic (EHD) model in three dimensions. The arising nonlinear system couples the incompressible Navier-Stokes equations for velocity and pressure with a convection diffusion equation for the charge density and a Poisson equation for the electric potential through the convection term, electro-migration term, Coulomb law and electrical force. A fully discrete scheme, which is based on the finite element method for the spatial discretization and first order semi-implicit scheme for the temporal discretization, is proposed to solve this multiphysics coupled system. It is shown that the proposed scheme is uniquely solvable and satisfies a total charge conservation law, and a discrete energy law unconditionally. The convergence of subsequences of the numerical solutions is established without extra assumptions on the regularity of the exact solution by utilizing the stability of the numerical scheme and the compactness method. As a by-product, the convergence result also provides a constructive proof of the existence of weak solution to the EHD model. Furthermore, given more regularity on the weak solution, the uniqueness of weak solution and convergence of the numerical scheme without extracting subsequences are also rigorously derived. Numerical experiments are also presented to validate the theoretical findings and to show the effectiveness of the proposed scheme.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129592"},"PeriodicalIF":1.2,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inequalities and asymptotics for hook lengths in ℓ-regular partitions and ℓ-distinct partitions 正则分区和不同分区中钩子长度的不等式和渐近性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-18 DOI: 10.1016/j.jmaa.2025.129599
Eunmi Kim
{"title":"Inequalities and asymptotics for hook lengths in ℓ-regular partitions and ℓ-distinct partitions","authors":"Eunmi Kim","doi":"10.1016/j.jmaa.2025.129599","DOIUrl":"10.1016/j.jmaa.2025.129599","url":null,"abstract":"<div><div>In this article, we study hook lengths in <em>ℓ</em>-regular partitions and <em>ℓ</em>-distinct partitions. More precisely, we establish hook length inequalities between <em>ℓ</em>-regular partitions and <em>ℓ</em>-distinct partitions for hook lengths 2 and 3, by deriving asymptotic formulas for the total number of hooks of length <em>t</em> in both partition classes, for <span><math><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>. From these asymptotics, we show that the ratio of the total number of hooks of length <em>t</em> in <em>ℓ</em>-regular partitions to those in <em>ℓ</em>-distinct partitions tends to a constant that depends on <em>ℓ</em> and <em>t</em>. We also provide hook length inequalities within <em>ℓ</em>-regular partitions and within <em>ℓ</em>-distinct partitions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129599"},"PeriodicalIF":1.2,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new two-grid mixed finite element Crank-Nicolson method for the temporal fractional fourth-order sine-Gordon equation 时间分数阶四阶正弦-戈登方程的两网格混合有限元Crank-Nicolson新方法
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-18 DOI: 10.1016/j.jmaa.2025.129597
Yihui Sun , Liang He , Yuejie Li , Chao Shen , Zhendong Luo
{"title":"A new two-grid mixed finite element Crank-Nicolson method for the temporal fractional fourth-order sine-Gordon equation","authors":"Yihui Sun ,&nbsp;Liang He ,&nbsp;Yuejie Li ,&nbsp;Chao Shen ,&nbsp;Zhendong Luo","doi":"10.1016/j.jmaa.2025.129597","DOIUrl":"10.1016/j.jmaa.2025.129597","url":null,"abstract":"<div><div>A new nonlinear temporal fractional fourth-order sine-Gordon (NTFFOSG) equation with practical physical significance is first developed. Then, by introducing an auxiliary function, the NTFFOSG equation is decomposed into the nonlinear system of equations with the second-order derivatives in spatial variables. Subsequently, by using the Crank-Nicolson (CN) scheme to discretize time derivative and time fractional derivative, a new time semi-discretization mixed CN (TSDMCN) scheme is constructed. Finally, by using two-grid mixed finite element (MFE) method to discretize the spatial variables in the TSDMCN scheme, a new two-grid MFE CN (TGMFECN) method with unconditional stability is established, which consists of a system of nonlinear MFE equations on coarser grids and a system of linear MFE equations on fine grids with sufficient precision, so it is very easy to solve. The largest contribution of this article is to theoretically analyze the existence, stability, and error estimates of the TSDMCN and TGMFECN solutions, and to verify the correctness of theoretical results and the superiority of the TGMFECN method through numerical experiments.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129597"},"PeriodicalIF":1.2,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some inequalities for the two-parameter Mittag-Leffler function in the complex plane 复平面上双参数Mittag-Leffler函数的若干不等式
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-17 DOI: 10.1016/j.jmaa.2025.129588
Roberto Garrappa , Stefan Gerhold , Marina Popolizio , Thomas Simon
{"title":"On some inequalities for the two-parameter Mittag-Leffler function in the complex plane","authors":"Roberto Garrappa ,&nbsp;Stefan Gerhold ,&nbsp;Marina Popolizio ,&nbsp;Thomas Simon","doi":"10.1016/j.jmaa.2025.129588","DOIUrl":"10.1016/j.jmaa.2025.129588","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For the two-parameter Mittag-Leffler function &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, we consider the question whether &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;ℜ&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are comparable on the whole complex plane. We show that the inequality &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;ℜ&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; holds globally if and only if &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is completely monotone on &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. For &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; we prove that the complete monotonicity of &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; on &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is necessary for the global inequality &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;ℜ&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and also sufficient for &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. For &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; we show that the absence of non-real zeros for &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is sufficient for the global inequality &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;ℜ&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and also necessary for &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. All these results have an explicit description in terms of the values of the parameters &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Along the way, several inequalities for &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; on the half-plane &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129588"},"PeriodicalIF":1.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A complete monotonicity theorem related to Fink's inequality with applications 关于Fink不等式的完全单调性定理及其应用
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-17 DOI: 10.1016/j.jmaa.2025.129600
Zhen-Hang Yang
{"title":"A complete monotonicity theorem related to Fink's inequality with applications","authors":"Zhen-Hang Yang","doi":"10.1016/j.jmaa.2025.129600","DOIUrl":"10.1016/j.jmaa.2025.129600","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;em&gt;F&lt;/em&gt; be a completely monotonic function on &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Fink in 1982 proved the inequality&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;munderover&gt;&lt;mo&gt;∏&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∏&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;for &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; satisfy &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≺&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Inspired by Fink's inequality, we further give the sufficient conditions for the function&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;↦&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∏&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;munderover&gt;&lt;mo&gt;∏&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/s","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129600"},"PeriodicalIF":1.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信