具有临界和对数非线性的磁性p-拉普拉斯Schrödinger方程的多碰撞解

IF 1.2 3区 数学 Q1 MATHEMATICS
Lulu Wei, Yueqiang Song
{"title":"具有临界和对数非线性的磁性p-拉普拉斯Schrödinger方程的多碰撞解","authors":"Lulu Wei,&nbsp;Yueqiang Song","doi":"10.1016/j.jmaa.2025.130093","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the following magnetic <em>p</em>-Laplacian Schrödinger equations with critical and logarithmic nonlinearities in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>:<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>A</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>(</mo><mi>λ</mi><mi>Z</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>β</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mi>log</mi><mo>⁡</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>=</mo><mtext>div</mtext><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>+</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>∇</mi><mi>u</mi><mo>+</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>)</mo><mo>)</mo></math></span> denotes the magnetic <em>p</em>-Laplacian, the magnetic potential <span><math><mi>A</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></math></span> and the parameters <span><math><mi>λ</mi><mo>,</mo><mi>β</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>Z</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> are the nonnegative continuous functions, <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span> is the Sobolev critical exponent. Applying variational methods, multiple multi-bump solutions for the above equation have been obtained. More precisely, our findings demonstrate that if the zero set of <em>Z</em> possesses several isolated connected components <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the interior of <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is not empty and ∂Ω is smooth, then for <span><math><mi>λ</mi><mo>≥</mo><mn>1</mn></math></span> sufficiently large, a bump solution is confined in a neighborhood of <span><math><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>Γ</mi></mrow></msub><msub><mrow><mi>Ω</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for every non-empty subset <span><math><mi>Γ</mi><mo>⊂</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. Furthermore, let <span><math><mi>λ</mi><mo>≥</mo><mn>1</mn></math></span> be large enough, we also show that the above equation has at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span> multi-bump solutions. The novelty and characteristic of this paper lie in the simultaneous appearance of critical and logarithmic nonlinearities in this equation, and the results in this paper extend the subcritical case [39] to the critical case.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130093"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-bump solutions of the magnetic p-Laplacian Schrödinger equations with critical and logarithmic nonlinearities\",\"authors\":\"Lulu Wei,&nbsp;Yueqiang Song\",\"doi\":\"10.1016/j.jmaa.2025.130093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the following magnetic <em>p</em>-Laplacian Schrödinger equations with critical and logarithmic nonlinearities in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>:<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>A</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>(</mo><mi>λ</mi><mi>Z</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>β</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mi>log</mi><mo>⁡</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>=</mo><mtext>div</mtext><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>+</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>∇</mi><mi>u</mi><mo>+</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>)</mo><mo>)</mo></math></span> denotes the magnetic <em>p</em>-Laplacian, the magnetic potential <span><math><mi>A</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></math></span> and the parameters <span><math><mi>λ</mi><mo>,</mo><mi>β</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>Z</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> are the nonnegative continuous functions, <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span> is the Sobolev critical exponent. Applying variational methods, multiple multi-bump solutions for the above equation have been obtained. More precisely, our findings demonstrate that if the zero set of <em>Z</em> possesses several isolated connected components <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the interior of <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is not empty and ∂Ω is smooth, then for <span><math><mi>λ</mi><mo>≥</mo><mn>1</mn></math></span> sufficiently large, a bump solution is confined in a neighborhood of <span><math><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>Γ</mi></mrow></msub><msub><mrow><mi>Ω</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for every non-empty subset <span><math><mi>Γ</mi><mo>⊂</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. Furthermore, let <span><math><mi>λ</mi><mo>≥</mo><mn>1</mn></math></span> be large enough, we also show that the above equation has at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span> multi-bump solutions. The novelty and characteristic of this paper lie in the simultaneous appearance of critical and logarithmic nonlinearities in this equation, and the results in this paper extend the subcritical case [39] to the critical case.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"556 1\",\"pages\":\"Article 130093\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008741\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008741","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究以下在RN中具有临界非线性和对数非线性的磁性p-拉普拉斯方程Schrödinger:−Δp,Au+(λZ(x)+V(x))|u|p - 2u=β|u|p - 2ulog (| u|p+|u|p 2u,x∈RN,其中N≥3,p∈[2,N], Δp,A=div(|∇u+iA(x)u|p - 2(∇u+iA(x)u))表示磁性p-拉普拉斯方程,磁位A∈Llocp(RN,RN)和参数λ,β≥1,Z(x),V(x):RN→R为非负连续函数,p =NpN−p为Sobolev临界指数。应用变分方法,得到了上述方程的多个多碰撞解。更准确地说,我们的研究结果证明,如果Z的零集具有几个孤立的连通分量Ω1,⋯,Ωk,使得Ωi的内部不是空的,∂Ω是光滑的,那么对于λ≥1足够大,对于每个非空子集Γ∧{1,⋯,k},一个凸起解被限制在一个邻域(∈ΓΩj)中。进一步,当λ≥1足够大时,我们还证明了上述方程至少有2k−1个多碰撞解。本文的新颖性和特点在于在该方程中同时出现临界非线性和对数非线性,并将亚临界情况[39]推广到临界情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-bump solutions of the magnetic p-Laplacian Schrödinger equations with critical and logarithmic nonlinearities
This paper focuses on the following magnetic p-Laplacian Schrödinger equations with critical and logarithmic nonlinearities in RN:Δp,Au+(λZ(x)+V(x))|u|p2u=β|u|p2ulog|u|p+|u|p2u,xRN, where N3, p[2,N), Δp,A=div(|u+iA(x)u|p2(u+iA(x)u)) denotes the magnetic p-Laplacian, the magnetic potential ALlocp(RN,RN) and the parameters λ,β1, Z(x),V(x):RNR are the nonnegative continuous functions, p=NpNp is the Sobolev critical exponent. Applying variational methods, multiple multi-bump solutions for the above equation have been obtained. More precisely, our findings demonstrate that if the zero set of Z possesses several isolated connected components Ω1,,Ωk such that the interior of Ωi is not empty and ∂Ω is smooth, then for λ1 sufficiently large, a bump solution is confined in a neighborhood of jΓΩj for every non-empty subset Γ{1,,k}. Furthermore, let λ1 be large enough, we also show that the above equation has at least 2k1 multi-bump solutions. The novelty and characteristic of this paper lie in the simultaneous appearance of critical and logarithmic nonlinearities in this equation, and the results in this paper extend the subcritical case [39] to the critical case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信