{"title":"具有临界指数非线性的Finsler N-Laplace方程","authors":"Monti Das , Sweta Tiwari","doi":"10.1016/j.jmaa.2025.130089","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate some anisotropic equations involving the Finsler <em>N</em>-Laplace operator <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub></math></span>, with Trudinger-Moser type critical exponential nonlinearity which involves the anisotropic norm. More precisely, we establish the existence of nontrivial solutions to the problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mspace></mspace><mtext> in </mtext><mi>Ω</mi><mo>,</mo></math></span></span></span> on a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, and to the anisotropic quasilinear Schrödinger problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></math></span></span></span> Here the nonlinearities <em>f</em> and <em>g</em> exhibit critical exponential-type growth, and the potential <em>V</em> is a continuous function that retains the compactness of the associated Sobolev embedding into a larger class of Lebesgue spaces under suitable assumptions. We obtain the existence results by employing the anisotropic Trudinger-Moser inequality, mountain-pass theorem, and Ekeland's variational principle.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130089"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finsler N-Laplace equations with critical exponential nonlinearity\",\"authors\":\"Monti Das , Sweta Tiwari\",\"doi\":\"10.1016/j.jmaa.2025.130089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we investigate some anisotropic equations involving the Finsler <em>N</em>-Laplace operator <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub></math></span>, with Trudinger-Moser type critical exponential nonlinearity which involves the anisotropic norm. More precisely, we establish the existence of nontrivial solutions to the problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mspace></mspace><mtext> in </mtext><mi>Ω</mi><mo>,</mo></math></span></span></span> on a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, and to the anisotropic quasilinear Schrödinger problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></math></span></span></span> Here the nonlinearities <em>f</em> and <em>g</em> exhibit critical exponential-type growth, and the potential <em>V</em> is a continuous function that retains the compactness of the associated Sobolev embedding into a larger class of Lebesgue spaces under suitable assumptions. We obtain the existence results by employing the anisotropic Trudinger-Moser inequality, mountain-pass theorem, and Ekeland's variational principle.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"556 1\",\"pages\":\"Article 130089\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008704\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008704","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Finsler N-Laplace equations with critical exponential nonlinearity
In this article, we investigate some anisotropic equations involving the Finsler N-Laplace operator , with Trudinger-Moser type critical exponential nonlinearity which involves the anisotropic norm. More precisely, we establish the existence of nontrivial solutions to the problem on a smooth bounded domain , and to the anisotropic quasilinear Schrödinger problem Here the nonlinearities f and g exhibit critical exponential-type growth, and the potential V is a continuous function that retains the compactness of the associated Sobolev embedding into a larger class of Lebesgue spaces under suitable assumptions. We obtain the existence results by employing the anisotropic Trudinger-Moser inequality, mountain-pass theorem, and Ekeland's variational principle.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.