具有临界指数非线性的Finsler N-Laplace方程

IF 1.2 3区 数学 Q1 MATHEMATICS
Monti Das , Sweta Tiwari
{"title":"具有临界指数非线性的Finsler N-Laplace方程","authors":"Monti Das ,&nbsp;Sweta Tiwari","doi":"10.1016/j.jmaa.2025.130089","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate some anisotropic equations involving the Finsler <em>N</em>-Laplace operator <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub></math></span>, with Trudinger-Moser type critical exponential nonlinearity which involves the anisotropic norm. More precisely, we establish the existence of nontrivial solutions to the problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mspace></mspace><mtext> in </mtext><mi>Ω</mi><mo>,</mo></math></span></span></span> on a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, and to the anisotropic quasilinear Schrödinger problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></math></span></span></span> Here the nonlinearities <em>f</em> and <em>g</em> exhibit critical exponential-type growth, and the potential <em>V</em> is a continuous function that retains the compactness of the associated Sobolev embedding into a larger class of Lebesgue spaces under suitable assumptions. We obtain the existence results by employing the anisotropic Trudinger-Moser inequality, mountain-pass theorem, and Ekeland's variational principle.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130089"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finsler N-Laplace equations with critical exponential nonlinearity\",\"authors\":\"Monti Das ,&nbsp;Sweta Tiwari\",\"doi\":\"10.1016/j.jmaa.2025.130089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we investigate some anisotropic equations involving the Finsler <em>N</em>-Laplace operator <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub></math></span>, with Trudinger-Moser type critical exponential nonlinearity which involves the anisotropic norm. More precisely, we establish the existence of nontrivial solutions to the problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mspace></mspace><mtext> in </mtext><mi>Ω</mi><mo>,</mo></math></span></span></span> on a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, and to the anisotropic quasilinear Schrödinger problem<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>≥</mo><mn>0</mn><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></math></span></span></span> Here the nonlinearities <em>f</em> and <em>g</em> exhibit critical exponential-type growth, and the potential <em>V</em> is a continuous function that retains the compactness of the associated Sobolev embedding into a larger class of Lebesgue spaces under suitable assumptions. We obtain the existence results by employing the anisotropic Trudinger-Moser inequality, mountain-pass theorem, and Ekeland's variational principle.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"556 1\",\"pages\":\"Article 130089\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008704\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008704","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了涉及Finsler N- laplace算子ΔH,N的具有Trudinger-Moser型涉及各向异性范数的临界指数非线性的各向异性方程。更准确地说,我们建立了在光滑有界域Ω∧RN,N≥2上的问题- ΔH Nu=f(x,u),u≥0在Ω上的非平凡解,以及各向异性拟线性问题- ΔH Nu+V(x)|u|N−2u=g(x,u),u≥0在RN上的非平凡解的存在性。在这里,非线性f和g表现出临界指数型增长,势V是一个连续函数,在适当的假设下,它保持了相关Sobolev嵌入到更大的一类Lebesgue空间中的紧性。利用各向异性Trudinger-Moser不等式、山口定理和Ekeland变分原理,得到了存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finsler N-Laplace equations with critical exponential nonlinearity
In this article, we investigate some anisotropic equations involving the Finsler N-Laplace operator ΔH,N, with Trudinger-Moser type critical exponential nonlinearity which involves the anisotropic norm. More precisely, we establish the existence of nontrivial solutions to the problemΔH,Nu=f(x,u),u0 in Ω, on a smooth bounded domain ΩRN,N2, and to the anisotropic quasilinear Schrödinger problemΔH,Nu+V(x)|u|N2u=g(x,u),u0 in RN. Here the nonlinearities f and g exhibit critical exponential-type growth, and the potential V is a continuous function that retains the compactness of the associated Sobolev embedding into a larger class of Lebesgue spaces under suitable assumptions. We obtain the existence results by employing the anisotropic Trudinger-Moser inequality, mountain-pass theorem, and Ekeland's variational principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信