Francisco Crespo , Jhon Vidarte , Jersson Villafañe
{"title":"Symplectic Reeb atlas and determination of periodic solutions in perturbed isotropic n-oscillators","authors":"Francisco Crespo , Jhon Vidarte , Jersson Villafañe","doi":"10.1016/j.jmaa.2024.129000","DOIUrl":"10.1016/j.jmaa.2024.129000","url":null,"abstract":"<div><div>We construct a symplectic atlas adapted to the flow action of an uncoupled isotropic <em>n</em>-oscillator, referred to as the Reeb atlas. In the context of Reeb's Theorem for Hamiltonian systems with symmetry, these variables are very useful for finding periodic orbits and determining their stability in perturbed harmonic oscillators. These variables separate orbits, meaning they are in bijective correspondence with the set of orbits. Hence, they are especially suited for determining the exact number of periodic solutions via reduction and averaging methods. Moreover, for an arbitrary polynomial perturbation, we provide lower and upper bounds for the number of periodic orbits according to the degree of the perturbation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyperinvariant subspaces for normaloid essential isometric operators","authors":"Neeru Bala , Ramesh Golla","doi":"10.1016/j.jmaa.2024.128998","DOIUrl":"10.1016/j.jmaa.2024.128998","url":null,"abstract":"<div><div>In this article, we prove the existence of a non-trivial hyperinvariant subspace for a subclass of compact perturbations of scalar multiple of a partial isometry. Later, we illustrate that this class contains several important classes of operators. As a consequence, we prove that a Schatten class perturbation of a partial isometry with finite-dimensional null space has a non-trivial hyperinvariant subspace.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sobolev compact embeddings in unbounded domains and its applications to elliptic equations","authors":"Ryuji Kajikiya","doi":"10.1016/j.jmaa.2024.129001","DOIUrl":"10.1016/j.jmaa.2024.129001","url":null,"abstract":"<div><div>We give a necessary and sufficient condition for the compact embedding of the Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>m</mi><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> for unbounded domains Ω. Applying this condition, we can decide whether the compact embedding holds or not. We give several examples of unbounded domains Ω satisfying the compact embedding. Using our condition, we study a semilinear elliptic equation in unbounded domains and prove the existence of a positive solution and infinitely many solutions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sharp bound on the number of self-intersections of a trigonometric curve","authors":"Sergei Kalmykov , Leonid V. Kovalev","doi":"10.1016/j.jmaa.2024.128995","DOIUrl":"10.1016/j.jmaa.2024.128995","url":null,"abstract":"<div><div>We obtain a sharp bound on the number of self-intersections of a closed planar curve with trigonometric parameterization. Moreover, we show that a generic curve of this form is normal in the sense of Whitney.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fourier coefficients of Jacobi Poincaré series and applications","authors":"Abhash Kumar Jha, Animesh Sarkar","doi":"10.1016/j.jmaa.2024.128994","DOIUrl":"10.1016/j.jmaa.2024.128994","url":null,"abstract":"<div><div>We define Jacobi Poincaré series over Cayley numbers and explicitly compute its Fourier coefficients. As an application, we obtain an estimate for the Fourier coefficients of a Jacobi cusp form. We also evaluate certain Petersson scalar products involving Jacobi cusp forms and Poincaré series. This evaluation yields certain special values of shifted convolution of Dirichlet series of Rankin-Selberg type associated to Jacobi cusp forms in consideration.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gradient estimates for unbounded Laplacians with ellipticity condition on graphs","authors":"Yong Lin , Shuang Liu","doi":"10.1016/j.jmaa.2024.128996","DOIUrl":"10.1016/j.jmaa.2024.128996","url":null,"abstract":"<div><div>In this article, we prove various gradient estimates for unbounded graph Laplacians which satisfy the ellipticity condition. Unlike common assumptions for unbounded Laplacians, i.e. completeness and non-degenerate measure, the ellipticity condition is purely local that is easy to verify on a graph. First, we establish an equivalent semigroup property, namely the gradient estimate of exponential curvature-dimension inequality, which is a modification of the curvature-dimension inequality and can be viewed as a notion of curvature on graphs. Additionally, we use the semigroup method to prove the Li-Yau inequalities and the Hamilton inequality for unbounded Laplacians on graphs with the ellipticity condition.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Population dynamics in a Leslie-Gower predator-prey model with proportional prey refuge at low densities","authors":"Christian Cortés-García","doi":"10.1016/j.jmaa.2024.128993","DOIUrl":"10.1016/j.jmaa.2024.128993","url":null,"abstract":"<div><div>In this paper we propose a mathematical Leslie-Gower predator-prey model, in which the prey takes refuge from the predator when its population size is below a critical threshold, the functional response of the predator is represented by a Holling II function, and the growth of the prey in the absence of the predator is subject to a semi-saturation parameter that affects its birth curve. Since the model is composed of two vector fields, its qualitative analysis includes, in addition to the determination of the number and stability of the equilibria for each vector field and belonging to the biological sense set, the study of the dynamics in the trajectories close to the dividing curve of the two vector fields in order to determine possible pseudo-equilibria. As a result, if the proposed model has a single inner equilibrium, then there is the possibility of having between one or at least two limit cycles, coexisting or not in both vector fields and around the inner equilibrium. Likewise, the model has a stable pseudo-equilibrium which may be surrounded by at least two limit cycle.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expansiveness, generators and Lyapunov exponents for random bundle transformations","authors":"Yu Liu, Xiaojun Huang","doi":"10.1016/j.jmaa.2024.128989","DOIUrl":"10.1016/j.jmaa.2024.128989","url":null,"abstract":"<div><div>We generalize Fathi's results by showing that a compact metrizable space admits an fiber expansive homeomorphism if and only if it has a compatible hyperbolic metric. Moreover, we prove that a compact metrizable space admits an fiber expansive homeomorphism if and only if it has a generator in detail. Furthermore, we show that a fiber expansive homeomorphism has finite fiber topological entropy. Finally, we show that fiber Lyapunov exponents for a fiber expansive system are different from zero, indicating that the system presents a chaotic system. Meanwhile, we also prove that negative fiber Lyapunov exponents for compact invariant sets of a dynamical system imply that the compact set is a fiber attractor.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On type I blowup of some nonlinear heat equations with a potential","authors":"Gui-Chun Jiang , Yu-Ying Wang , Gao-Feng Zheng","doi":"10.1016/j.jmaa.2024.128990","DOIUrl":"10.1016/j.jmaa.2024.128990","url":null,"abstract":"<div><div>In this paper, we are concerned with the following initial-boundary value problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>Q</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>p</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span>, and <span><math><mi>Q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>R</mi><mo>]</mo><mo>)</mo></math></span>, <span><math><mn>0</mn><mo><</mo><munder><mrow><mi>C</mi></mrow><mo>_</mo></munder><mo>≤</mo><mi>Q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>≤</mo><mover><mrow><mi>C</mi></mrow><mo>‾</mo></mover><mo><</mo><mo>∞</mo><mo>,</mo><mspace></mspace><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>r</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>. We extend the asymptotic behavior results, which is well-known when <em>Q</em> is constant according to Matano-Merle (cf. <span><span>[25]</span></span>), for the blow-up solutions. More precisely, we show that when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>≤</mo><mi>p</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the blowup of radial solution to this problem is always of Type I. This result partially generalizes the conclusions in <span><span>[25]</span></span> for <span><math><mi>Q</mi><mo>≡</mo><mn>1</mn></math></span>. This extension is nontrivial due to the appearance of <em>Q</em>. The quasi-monotonicity formula established by the third author and Cheng in <span><span>[8]</span></span> allows us","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence of time-periodic strong solutions to the Navier-Stokes equation in the whole space","authors":"Tomoyuki Nakatsuka","doi":"10.1016/j.jmaa.2024.128991","DOIUrl":"10.1016/j.jmaa.2024.128991","url":null,"abstract":"<div><div>In this paper, the existence of time-periodic strong solutions to the Navier-Stokes equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is established under a suitable smallness condition on the external force. Our analysis is based on splitting periodic solutions into steady and purely periodic parts. One advantage of this decomposition is the availability of slightly more regularity in time of the purely periodic part. We apply this property to construct time-periodic solutions of the Navier-Stokes equation with information on the classes of their steady and purely periodic parts. It is also shown that the small solution <em>v</em> constructed in our existence theorem is unique within a class of time-periodic, not necessarily small, solutions having the same integrability properties as <em>v</em>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}