{"title":"Fractional maximal operator in hyperbolic spaces","authors":"Gonzalo Ibañez-Firnkorn, Emanuel Ramadori","doi":"10.1016/j.jmaa.2024.129079","DOIUrl":"10.1016/j.jmaa.2024.129079","url":null,"abstract":"<div><div>In this article, we introduce the fractional maximal operator on the Hyperbolic space, a non-doubling measure space, and study its weighted boundedness. Motivated by the weighted boundedness of the Hardy-Littlewood maximal studied by Antezana and Ombrosi in <span><span>[1]</span></span>, we give conditions for the weak type and strong type estimate for fractional maximal. Also, we present examples of weights for which the fractional maximal operator satisfies weak type <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> inequality but strong type <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> inequality fails.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129079"},"PeriodicalIF":1.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linear-quadratic stochastic Stackelberg differential games with asymmetric information for systems driven by multi-dimensional jump-diffusion processes","authors":"Jun Moon","doi":"10.1016/j.jmaa.2024.129068","DOIUrl":"10.1016/j.jmaa.2024.129068","url":null,"abstract":"<div><div>We consider the linear-quadratic stochastic leader-follower Stackelberg differential game for jump-diffusion systems with asymmetric information. In our problem setup, given complete information <span><math><mi>F</mi></math></span>, leader and follower have access to partial information (filtration) <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mi>F</mi></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><mi>F</mi></math></span>, respectively, where <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> captures asymmetric information. Our paper can be viewed as an extension of the complete information (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>F</mi></math></span>) in <span><span>[15]</span></span> to the problem with partial and asymmetric information. By generalizing the stochastic maximum principles and four-step schemes of <span><span>[15]</span></span>, we obtain the state-feedback representation of the (open-loop type) Stackelberg equilibrium for the leader and the follower in terms of the coupled integro-type Riccati differential equations and the filtering (state) processes with respect to <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. Indeed, due to the partial and asymmetric information nature, we have to identify new types of the four-step schemes and develop different approaches to obtain the (filtering-based) state-feedback type Stackelberg equilibrium.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129068"},"PeriodicalIF":1.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juntao Du , Bingyang Hu , Songxiao Li , Xiaojing Zhou
{"title":"Toeplitz operators on Bergman spaces induced by doubling weights in the unit ball of Cn","authors":"Juntao Du , Bingyang Hu , Songxiao Li , Xiaojing Zhou","doi":"10.1016/j.jmaa.2024.129077","DOIUrl":"10.1016/j.jmaa.2024.129077","url":null,"abstract":"<div><div>In this paper, we study the boundedness and compactness of the Toeplitz operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> for <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span>, where the weighted Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> are induced by (radially) doubling weights in the unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The equivalence between the boundedness and compactness of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> is also established under the assumption with <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mi>p</mi></math></span>. Our work extends the early work of Peláez, Rättyä, and Sierra to higher dimensions, as well as to a larger class of radial weights.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129077"},"PeriodicalIF":1.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vicente Ocqueteau , Raúl Gormaz , Jorge San Martín , Carlos Conca
{"title":"A parabolic multiscale inverse problem approached via homogenization: A numerical method","authors":"Vicente Ocqueteau , Raúl Gormaz , Jorge San Martín , Carlos Conca","doi":"10.1016/j.jmaa.2024.129073","DOIUrl":"10.1016/j.jmaa.2024.129073","url":null,"abstract":"<div><div>A method based on homogenization is studied for the solution of a multiscale inverse problem. We consider a class of parabolic problems with highly oscillatory tensors that vary on a microscopic scale. We assume that the microscopic structure is known and seek to recover a macroscopic scalar parameterization of the multiscale tensor. Classical approaches, such as finite elements methods, would require mesh resolution for the direct problem down to the finest scale, that could lead to computational difficulties when implemented. So, starting from the full fine scale model, we solve the inverse problem for a coarse model obtained by homogenization, both theoretically and numerically. The input data, which consist on measurements from the fluxes and the solutions of the direct problem in a given time, are solely based on the original fine scale model. Uniqueness and stability of the inverse problem obtained via homogenization are established under some natural conditions for the fine scale model, and a link with this latter model is established by means of G-convergence. Error estimates are proven for the method.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129073"},"PeriodicalIF":1.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local boundedness for vectorial minimizers of non-uniform variational integrals","authors":"Zhang Aiping, Feng Zesheng, Gao Hongya","doi":"10.1016/j.jmaa.2024.129074","DOIUrl":"10.1016/j.jmaa.2024.129074","url":null,"abstract":"<div><div>We establish the local boundedness of vectorial local minimizers for a specific class of integral functionals with rank-one convex integrands under appropriate structural assumptions. Our method adapts the renowned De Giorgi‘s iteration technique and employs a suitable Caccioppoli-type inequality. Our findings are applicable to polyconvex integrals<span><span><span><math><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>{</mo><munderover><mo>∑</mo><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></munderover><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>}</mo></mrow><mi>d</mi><mi>x</mi></math></span></span></span> with suitable <span><math><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>,</mo><mi>r</mi><mo>></mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129074"},"PeriodicalIF":1.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Propagation dynamics of the lattice Leslie-Gower predator-prey system in shifting habitats","authors":"Fei-Ying Yang, Qian Zhao","doi":"10.1016/j.jmaa.2024.129075","DOIUrl":"10.1016/j.jmaa.2024.129075","url":null,"abstract":"<div><div>In this paper, we are concerned with the propagation dynamics of a discrete diffusive Leslie-Gower predator-prey system in shifting habitats. First, we discuss the spreading properties of the corresponding Cauchy problem depending on the range of the shifting speed which is identified respectively by (i) extinction of two species; (ii) only one species surviving; (iii) persistence of two species. Then, we give the existence of two types of forced waves, that is, I type forced waves invading the state where only one species exists in supercritical case and critical case, and II type forced waves invading coexistence state for any speed.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129075"},"PeriodicalIF":1.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global boundedness in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization","authors":"Wei Wang, Xi Zhao, Sining Zheng","doi":"10.1016/j.jmaa.2024.129071","DOIUrl":"10.1016/j.jmaa.2024.129071","url":null,"abstract":"<div><div>We study the chemotaxis-Navier-Stokes system modeling coral fertilization<span><span><span>(⋆)</span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>=</mo><mi>Δ</mi><mi>n</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>−</mo><mi>n</mi><mi>m</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mo>+</mo><mi>m</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>m</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>m</mi><mo>=</mo><mi>Δ</mi><mi>m</mi><mo>−</mo><mi>n</mi><mi>m</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>κ</mi><mo>(</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>∇</mi><mi>ϕ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow></mrow></math></span></span></span> in a bounded and smooth domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><mi>κ</mi><mo>≠</mo><mn>0</mn></math></span>, <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><mi>S</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>×</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span> fulfills <span><math><mo>|</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>|</mo><mo>≤</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>c</mi><mo>)</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></math></span> for all <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>×</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mi>α</mi><mo>∈</mo><mi>R</mi></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 1","pages":"Article 129071"},"PeriodicalIF":1.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mónica Clapp , Víctor Hernández-Santamaría , Alberto Saldaña
{"title":"A strong unique continuation property for weakly coupled elliptic systems","authors":"Mónica Clapp , Víctor Hernández-Santamaría , Alberto Saldaña","doi":"10.1016/j.jmaa.2024.129069","DOIUrl":"10.1016/j.jmaa.2024.129069","url":null,"abstract":"<div><div>We establish the validity of a strong unique continuation property for weakly coupled elliptic systems, including competitive ones. Our proof exploits the system-structure of the problem and Carleman estimates. Then, we use our unique continuation theorems to show two nonexistence results. The first one states the nonexistence of nontrivial solutions to a weakly coupled elliptic system with a critical nonlinearity and Dirichlet boundary condition on starshaped domains, whereas the second one yields nonexistence of symmetric least energy solutions for a critical system in more general domains.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129069"},"PeriodicalIF":1.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conjugacy between piecewise monotone functions decreasing on characteristic interval","authors":"Jialing Zhang , Xiao Tang , Liu Liu","doi":"10.1016/j.jmaa.2024.129066","DOIUrl":"10.1016/j.jmaa.2024.129066","url":null,"abstract":"<div><div>It is known that topological conjugacy is important in the study of functional equations and dynamical systems, since all functions share topological dynamical properties if they are topologically conjugate. In this paper, the necessary and sufficient conditions of topological conjugacy between two piecewise monotone functions of non-monotonicity height 1, which are decreasing on their characteristic intervals, are given.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 1","pages":"Article 129066"},"PeriodicalIF":1.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bivariate generalized Poisson distribution and its relation with 2D–Hermite polynomials","authors":"Bujar Xh. Fejzullahu","doi":"10.1016/j.jmaa.2024.129006","DOIUrl":"10.1016/j.jmaa.2024.129006","url":null,"abstract":"<div><div>In this paper we consider the bivariate generalized Poisson (G-P) distribution, which is derived from the confluent hypergeometric distribution using the trivariate reduction method. We study some of its important properties such as generating functions, recurrence relations, and differential equations for its probabilities. Furthermore, we show that the certain bivariate G-P distribution is related with the 2D–Hermite type polynomials. As consequence, several formulas for the 2D–Hermite polynomials are obtained.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 1","pages":"Article 129006"},"PeriodicalIF":1.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}