Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
A complete monotonicity theorem related to Fink's inequality with applications 关于Fink不等式的完全单调性定理及其应用
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-17 DOI: 10.1016/j.jmaa.2025.129600
Zhen-Hang Yang
{"title":"A complete monotonicity theorem related to Fink's inequality with applications","authors":"Zhen-Hang Yang","doi":"10.1016/j.jmaa.2025.129600","DOIUrl":"10.1016/j.jmaa.2025.129600","url":null,"abstract":"<div><div>Let <em>F</em> be a completely monotonic function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span> for <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Fink in 1982 proved the inequality<span><span><span><math><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></span></span>for <span><math><mi>x</mi><mo>></mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> satisfy <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>≺</mo><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub></math></span>. Inspired by Fink's inequality, we further give the sufficient conditions for the function<span><span><span><math><mi>x</mi><mo>↦</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></s","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129600"},"PeriodicalIF":1.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
F4-Appell series in p-adic settings and their connections to algebraic curves p进设置中的f4 - apell级数及其与代数曲线的联系
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-17 DOI: 10.1016/j.jmaa.2025.129601
Shaik Azharuddin , Gautam Kalita
{"title":"F4-Appell series in p-adic settings and their connections to algebraic curves","authors":"Shaik Azharuddin ,&nbsp;Gautam Kalita","doi":"10.1016/j.jmaa.2025.129601","DOIUrl":"10.1016/j.jmaa.2025.129601","url":null,"abstract":"<div><div>Motivated by an expression for the number of points on an algebraic curve in terms of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series over finite fields, we here define a <em>p</em>-adic analog for the <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series. Consequently, we find a relation of the number of points on the algebraic curve with the <em>p</em>-adic <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series, extending the earlier result to all primes. Finally, we deduce some transformation formulas for the <em>p</em>-adic <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series analogous to their classical counterparts.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129601"},"PeriodicalIF":1.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On equations of Lund-Regge type 关于Lund-Regge型方程
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-17 DOI: 10.1016/j.jmaa.2025.129596
Arturo Benson, Alvaro Hidalgo, Enrique G. Reyes
{"title":"On equations of Lund-Regge type","authors":"Arturo Benson,&nbsp;Alvaro Hidalgo,&nbsp;Enrique G. Reyes","doi":"10.1016/j.jmaa.2025.129596","DOIUrl":"10.1016/j.jmaa.2025.129596","url":null,"abstract":"<div><div>We introduce a new class of partial differential equations admitting a geometric interpretation, the class of equations <em>of Lund-Regge type</em>. These equations describe surfaces immersed in a three dimensional euclidean sphere, admit conservation laws, and they are the integrability condition of <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> overdetermined <span><math><mi>s</mi><mi>o</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>R</mi><mo>)</mo></math></span>-valued linear systems. As examples, we present equations describing minimal surfaces, equations describing spherical surfaces, a generalization of the integrable Konno-Oono coupled system, and an <em>elliptic Lund-Regge equation</em> that generalizes the sinh-Poisson equation of plasma physics. We also present a structural result on second order equations of Lund-Regge type.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129596"},"PeriodicalIF":1.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new pointwise inequality for rough operators and applications 粗糙算子的一个新的点不等式及其应用
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-16 DOI: 10.1016/j.jmaa.2025.129595
Diego Chamorro , Anca-Nicoleta Marcoci , Liviu-Gabriel Marcoci
{"title":"A new pointwise inequality for rough operators and applications","authors":"Diego Chamorro ,&nbsp;Anca-Nicoleta Marcoci ,&nbsp;Liviu-Gabriel Marcoci","doi":"10.1016/j.jmaa.2025.129595","DOIUrl":"10.1016/j.jmaa.2025.129595","url":null,"abstract":"<div><div>We study in this article a new pointwise estimate for “rough” singular integral operators. From this pointwise estimate we will derive Sobolev type inequalities in a variety of functional spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129595"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analysis of non-selfadjoint first-order differential operators with non-local point interactions 具有非局部点相互作用的非自伴随一阶微分算子的分析
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-16 DOI: 10.1016/j.jmaa.2025.129590
Christoph Fischbacher, Danie Paraiso, Chloe Povey-Rowe, Brady Zimmerman
{"title":"An analysis of non-selfadjoint first-order differential operators with non-local point interactions","authors":"Christoph Fischbacher,&nbsp;Danie Paraiso,&nbsp;Chloe Povey-Rowe,&nbsp;Brady Zimmerman","doi":"10.1016/j.jmaa.2025.129590","DOIUrl":"10.1016/j.jmaa.2025.129590","url":null,"abstract":"<div><div>We study the spectra of non-selfadjoint first-order operators on the interval with non-local point interactions, formally given by <span><math><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>V</mi><mo>+</mo><mi>k</mi><mo>〈</mo><mi>δ</mi><mo>,</mo><mo>⋅</mo><mo>〉</mo></math></span>. We give precise estimates on the location of the eigenvalues on the complex plane and prove that the root vectors of these operators form Riesz bases of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo>)</mo></math></span>. Under the additional assumption that the operator is maximally dissipative, we prove that it can have at most one real eigenvalue, and given any <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span>, we explicitly construct the unique operator realization such that <em>λ</em> is in its spectrum. We also investigate the time-evolution generated by these maximally dissipative operators.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129590"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143869840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calderón-Zygmund type estimate for the singular parabolic double-phase system 奇异抛物线双相系统的Calderón-Zygmund型估计
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-16 DOI: 10.1016/j.jmaa.2025.129593
Wontae Kim
{"title":"Calderón-Zygmund type estimate for the singular parabolic double-phase system","authors":"Wontae Kim","doi":"10.1016/j.jmaa.2025.129593","DOIUrl":"10.1016/j.jmaa.2025.129593","url":null,"abstract":"<div><div>This paper discusses the local Calderón-Zygmund type estimate for the singular parabolic double-phase system. The proof covers the counterpart <span><math><mi>p</mi><mo>&lt;</mo><mn>2</mn></math></span> of the result in <span><span>[23]</span></span>. Phase analysis is employed to determine an appropriate intrinsic geometry for each phase. Comparison estimates and scaling invariant properties for each intrinsic geometry are the main techniques to obtain the main estimate.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129593"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal convergence rate of the vanishing shear viscosity limit for one-dimensional isentropic planar MHD equations 一维等熵平面MHD方程剪切黏度极限消失的最优收敛速率
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-16 DOI: 10.1016/j.jmaa.2025.129591
Cailong Gao, Xia Ye
{"title":"Optimal convergence rate of the vanishing shear viscosity limit for one-dimensional isentropic planar MHD equations","authors":"Cailong Gao,&nbsp;Xia Ye","doi":"10.1016/j.jmaa.2025.129591","DOIUrl":"10.1016/j.jmaa.2025.129591","url":null,"abstract":"<div><div>In this paper, we consider the initial-boundary value problem for the one-dimensional isentropic planar magnetohydrodynamics (MHD) equations. Using asymptotic expansions, we study the expression of the boundary layer and the rate of convergence of the vanishing shear viscosity limit, which optimizes the convergence rate <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></math></span> of the results presented in reference Ye and Zhang <span><span>[35]</span></span> (2016) to <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129591"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normalized solutions to the quasilinear Schrödinger system with p-Laplacian under the Lp-mass supercritical case lp质量超临界条件下p-拉普拉斯拟线性Schrödinger系统的归一化解
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-16 DOI: 10.1016/j.jmaa.2025.129594
Yanan Liu , Ruifeng Zhang , Xiangyi Zhang
{"title":"Normalized solutions to the quasilinear Schrödinger system with p-Laplacian under the Lp-mass supercritical case","authors":"Yanan Liu ,&nbsp;Ruifeng Zhang ,&nbsp;Xiangyi Zhang","doi":"10.1016/j.jmaa.2025.129594","DOIUrl":"10.1016/j.jmaa.2025.129594","url":null,"abstract":"<div><div>Considering any dimension <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and for given <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>, as well as a nonlinear term <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> exhibiting mass supercritical and Sobolev subcritical growth, we investigate the existence of normalized ground state solutions to the quasilinear Schrödinger equation with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-constraint via Nehari-Pohozaev manifold and minimizing method under appropriate assumptions of potential function <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Moreover, we give the asymptotic behavior for the ground state energy as <span><math><mi>a</mi><mo>→</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129594"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143855955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions 康托级数展开中的非齐次和同时丢番图近似
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-16 DOI: 10.1016/j.jmaa.2025.129589
Zhipeng Shen, Baiyang Zhang
{"title":"Inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions","authors":"Zhipeng Shen,&nbsp;Baiyang Zhang","doi":"10.1016/j.jmaa.2025.129589","DOIUrl":"10.1016/j.jmaa.2025.129589","url":null,"abstract":"<div><div>Let <span><math><mi>Q</mi><mo>=</mo><msub><mrow><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> be a sequence of positive integers with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>. Then every <span><math><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is attached with a Cantor series expansion of the form<span><span><span><math><mi>x</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>+</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>.</mo></math></span></span></span> We study inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions. Several versions of generalized shrinking target sets are defined in our framework. We will give a complete metric theory of these object sets in the sense of Lebesgue measure, Hausdorff measure and Hausdorff dimension.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129589"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional divergence risk measures 条件发散风险措施
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-04-16 DOI: 10.1016/j.jmaa.2025.129598
Giulio Principi , Fabio Maccheroni
{"title":"Conditional divergence risk measures","authors":"Giulio Principi ,&nbsp;Fabio Maccheroni","doi":"10.1016/j.jmaa.2025.129598","DOIUrl":"10.1016/j.jmaa.2025.129598","url":null,"abstract":"<div><div>Our paper contributes to the theory of conditional risk measures and conditional certainty equivalents. We adopt a random modular approach which proved to be effective in the study of modular convex analysis and conditional risk measures. In particular, we study the conditional counterpart of optimized certainty equivalents. In the process, we provide representation results for niveloids in the conditional <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-space. By employing such representation results we retrieve a conditional version of the variational formula for optimized certainty equivalents. In conclusion, we apply this formula to provide a variational representation of the conditional entropic risk measure.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129598"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信