Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
A structure-preserving reduced-order finite difference approach for a class of semilinear stochastic partial differential equations driven by white noise 一类由白噪声驱动的半线性随机偏微分方程的保结构降阶有限差分方法
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-17 DOI: 10.1016/j.jmaa.2025.129807
Jiangping Dong , Wei Zhao , Huanrong Li
{"title":"A structure-preserving reduced-order finite difference approach for a class of semilinear stochastic partial differential equations driven by white noise","authors":"Jiangping Dong ,&nbsp;Wei Zhao ,&nbsp;Huanrong Li","doi":"10.1016/j.jmaa.2025.129807","DOIUrl":"10.1016/j.jmaa.2025.129807","url":null,"abstract":"<div><div>This paper presents a novel reduced-order finite difference (ROFD) approach that integrates proper orthogonal decomposition (POD) with the finite difference (FD) method to efficiently solve a class of semilinear stochastic partial differential equations (SPDEs) driven by white noise. SPDEs are a class of mathematical models that incorporate random terms or stochastic processes to describe the evolution of systems under uncertainty. SPDEs play a crucial role in modeling real-world phenomena across various fields, including physics, finance, and environmental science, where stochastic process is an inherent component. However, the presence of noise terms and selection of large sample data pose significant challenges for numerical solutions. The proposed ROFD method not only retains the approximation accuracy of the original FD method but also preserves the structural properties of the original semilinear SPDEs. For instance, the mathematical expectation of the numerical solutions under large-sample data satisfies the maximum principle, energy dissipation and so on. A series of numerical experiments have been performed to evaluate the effectiveness of the ROFD method in solving a class of semilinear SPDEs. The numerical results demonstrate that the ROFD method provides highly accurate numerical solutions, exhibits excellent stability and significantly enhances computational efficiency. Due to these advantages, it serves as a highly competitive and practical numerical method for addressing complex SPDEs in real-world applications.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129807"},"PeriodicalIF":1.2,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lowest-order divergence-free virtual element method for Navier-Stokes equations with damping on polygonal mesh 多边形网格上具有阻尼的Navier-Stokes方程的一种低阶无散度虚元法
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129792
Yanping Chen , Qing Li , Jian Huang , Yu Xiong
{"title":"A lowest-order divergence-free virtual element method for Navier-Stokes equations with damping on polygonal mesh","authors":"Yanping Chen ,&nbsp;Qing Li ,&nbsp;Jian Huang ,&nbsp;Yu Xiong","doi":"10.1016/j.jmaa.2025.129792","DOIUrl":"10.1016/j.jmaa.2025.129792","url":null,"abstract":"<div><div>This paper focuses on designing a lowest-order divergence-free virtual element method for solving Navier-Stokes equations with a nonlinear damping term on polygonal meshes. The exact divergence-free property of virtual space preserves the mass-conservation of the system. With the application of Helmholtz projection, we provide stability estimates regarding the velocity. An optimal convergence estimate is derived, showing that the error estimate for the velocity in energy norm is pressure-independent. Finally, we perform various numerical simulations to validate the accuracy of our theoretical findings.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129792"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144314468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry of finite energy solutions to critical p-Laplacian systems in RN RN中临界p-拉普拉斯系统有限能量解的对称性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129812
Min Zhou, Zexin Zhang
{"title":"Symmetry of finite energy solutions to critical p-Laplacian systems in RN","authors":"Min Zhou,&nbsp;Zexin Zhang","doi":"10.1016/j.jmaa.2025.129812","DOIUrl":"10.1016/j.jmaa.2025.129812","url":null,"abstract":"<div><div>In this paper, we are concerned with the symmetry of finite energy solutions <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> to the following critical <em>p</em>-Laplacian system:<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>v</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>m</mi><mo>,</mo><mi>q</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mo>,</mo><mspace></mspace><mi>r</mi><mo>,</mo><mi>s</mi><mo>≥</mo><mn>0</mn></math></span> satisfy <span><math><mi>m</mi><mo>−</mo><mi>s</mi><mo>≥</mo><mi>q</mi><mo>−</mo><mi>r</mi><mo>&gt;</mo><mo>−</mo><mi>p</mi><mo>+</mo><mn>1</mn></math></span> and <span><math><mi>m</mi><mo>+</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>=</mo><mi>q</mi><mo>+</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>:</mo><mo>=</mo><mfrac><mrow><mi>p</mi><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>. Using decay estimates of the solutions at infinity obtained in <span><span>[34, Theorem 1.3]</span></span>, we apply the moving planes method to prove that <em>u</em> and <em>v</em> are both radial and radially decreasing about some point <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129812"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144308118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fundamental solutions for parabolic equations and systems: Universal existence, uniqueness, representation 抛物方程和系统的基本解:普遍存在,唯一性,表示
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129806
Pascal Auscher, Khalid Baadi
{"title":"Fundamental solutions for parabolic equations and systems: Universal existence, uniqueness, representation","authors":"Pascal Auscher,&nbsp;Khalid Baadi","doi":"10.1016/j.jmaa.2025.129806","DOIUrl":"10.1016/j.jmaa.2025.129806","url":null,"abstract":"<div><div>In this paper, we develop a universal, conceptually simple and systematic method to prove well-posedness to Cauchy problems for weak solutions of parabolic equations with non-smooth, time-dependent, elliptic part having a variational definition. Our classes of weak solutions are taken with minimal assumptions. We prove the existence and uniqueness of a fundamental solution which seems new in this generality: it is shown to always coincide with the associated evolution family for the initial value problem with zero source and it yields representation of all weak solutions. Our strategy is a variational approach avoiding density arguments, a priori regularity of weak solutions or regularization by smooth operators. One of our main tools are embedding results which yield time continuity of our weak solutions going beyond the celebrated Lions regularity theorem and that is addressing a variety of source terms. We illustrate our results with three concrete applications: second order uniformly elliptic part with Dirichlet boundary condition on domains, integro-differential elliptic part, and second order degenerate elliptic part.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129806"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automorphisms of subalgebras of bounded analytic functions 有界解析函数的子代数的自同构
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129804
Kanha Behera, Rahul Maurya, P. Muthukumar
{"title":"Automorphisms of subalgebras of bounded analytic functions","authors":"Kanha Behera,&nbsp;Rahul Maurya,&nbsp;P. Muthukumar","doi":"10.1016/j.jmaa.2025.129804","DOIUrl":"10.1016/j.jmaa.2025.129804","url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> denote the algebra of all bounded analytic functions on the unit disk. It is well-known that every (algebra) automorphism of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> is a composition operator induced by disc automorphism. Maurya et al., (J. Math. Anal. Appl. 530: Paper No: 127698, 2024) proved that every automorphism of the subalgebras <span><math><mo>{</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>:</mo><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn><mo>}</mo></math></span> or <span><math><mo>{</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>:</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn><mo>}</mo></math></span> is a composition operator induced by a rotation. In this article, we give very simple proof of their results. As an interesting generalization, for any <span><math><mi>ψ</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, we show that every automorphism of <span><math><mi>ψ</mi><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> must be a composition operator and characterize all such composition operators. Using this characterization, we find all automorphism of <span><math><mi>ψ</mi><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> for few choices of <em>ψ</em> with various nature depending on its zeros.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129804"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum principles and consequences for γ-translators in Rn+1 II Rn+1中γ-翻译器的最大原理和后果
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129809
José Torres Santaella
{"title":"Maximum principles and consequences for γ-translators in Rn+1 II","authors":"José Torres Santaella","doi":"10.1016/j.jmaa.2025.129809","DOIUrl":"10.1016/j.jmaa.2025.129809","url":null,"abstract":"<div><div>This paper focuses on the translating solitons of fully nonlinear extrinsic curvature geometric flows in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. We present a generalization of the Spruck-Xiao's and Spruck-Sun's convexity results for 1-homogeneous convex/concave curvature functions, and further provide several characterizations of the family of Grim Reaper cylinders under curvature constraints.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129809"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the algebraic lower bound for the radius of spatial analyticity for the Zakharov-Kuznetsov and modified Zakharov-Kuznetsov equations 关于Zakharov-Kuznetsov方程和修正Zakharov-Kuznetsov方程空间解析半径的代数下界
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129802
Mikaela Baldasso, Mahendra Panthee
{"title":"On the algebraic lower bound for the radius of spatial analyticity for the Zakharov-Kuznetsov and modified Zakharov-Kuznetsov equations","authors":"Mikaela Baldasso,&nbsp;Mahendra Panthee","doi":"10.1016/j.jmaa.2025.129802","DOIUrl":"10.1016/j.jmaa.2025.129802","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We consider the initial value problem (IVP) for the 2D generalized Zakharov-Kuznetsov (ZK) equation&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and the initial data &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is real analytic in a complex strip in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and have radius of spatial analyticity &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. For both &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, considering a symmetrized version, we prove that there exists &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; such that the radius of spatial analyticity of the solution remains the same in the time interval &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. We also consider the evolution of the radius of spatial analyticity when the local solution extends globally in time. For the Zakharov-Kuznetsov equation (&lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;), we prove that, in both focusing (&lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;) and defocusing (&lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;) cases, and for any &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, the radius of analyticity cannot decay faster than &lt;span&gt;&lt;math&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129802"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144471156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local and global bifurcation analysis of density-suppressed motility model 密度抑制运动模型的局部和全局分岔分析
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129810
Di Liu , Junping Shi , Weihua Jiang
{"title":"Local and global bifurcation analysis of density-suppressed motility model","authors":"Di Liu ,&nbsp;Junping Shi ,&nbsp;Weihua Jiang","doi":"10.1016/j.jmaa.2025.129810","DOIUrl":"10.1016/j.jmaa.2025.129810","url":null,"abstract":"<div><div>In this paper, we study a density-suppressed motility reaction-diffusion population model with Dirichlet boundary conditions in spatially heterogeneous environments. We establish the existence of local-in-time classical solutions and apply local bifurcation theory to identify a positive bifurcation point for steady-state solutions. The existence of non-constant positive steady-state solutions is obtained, and it is shown that the bifurcation direction of the bifurcation curve can be either forward or backward, which is determined by the density-suppressed diffusion term. Furthermore, the boundedness of non-constant positive steady-state solutions is obtained by the comparison principle, and the boundedness of solutions implies that the bifurcation branches from local bifurcation can be extended globally, hence a global bifurcation diagram is derived rigorously. Finally, numerical simulations verify our theoretical results and demonstrate the effect of spatial heterogeneity on pattern formation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129810"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite divisibility of the product of two correlated normal random variables and exact distribution of the sample mean 两个相关的正态随机变量乘积的无限可整除性和样本均值的精确分布
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129800
Robert E. Gaunt , Saralees Nadarajah , Tibor K. Pogány
{"title":"Infinite divisibility of the product of two correlated normal random variables and exact distribution of the sample mean","authors":"Robert E. Gaunt ,&nbsp;Saralees Nadarajah ,&nbsp;Tibor K. Pogány","doi":"10.1016/j.jmaa.2025.129800","DOIUrl":"10.1016/j.jmaa.2025.129800","url":null,"abstract":"<div><div>We prove that the distribution of the product of two correlated normal random variables with arbitrary means and arbitrary variances is infinitely divisible. We also obtain exact formulas for the probability density function of the sum of independent copies of such random variables.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129800"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144314358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal representations of the number zero on the parabola curve 分形表示抛物线曲线上的数字零
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-06-16 DOI: 10.1016/j.jmaa.2025.129801
Xuemin Wang , Yi Lu , Jingjing Chen , Kan Jiang
{"title":"Fractal representations of the number zero on the parabola curve","authors":"Xuemin Wang ,&nbsp;Yi Lu ,&nbsp;Jingjing Chen ,&nbsp;Kan Jiang","doi":"10.1016/j.jmaa.2025.129801","DOIUrl":"10.1016/j.jmaa.2025.129801","url":null,"abstract":"<div><div>Motivated by several results in the study of unique <em>q</em>-expansions, this paper investigates the following problem. Let <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> be a self-similar set with the convex hull <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. How many distinct pairs <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>K</mi></math></span> satisfy the equation<span><span><span><math><mn>0</mn><mo>=</mo><mi>y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>?</mo></math></span></span></span> We establish the following result:</div><div>For any <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, there exists a homogeneous self-similar set <em>K</em> (with convex hull <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>) such that<span><span><span><math><mi>α</mi><mo>−</mo><mi>ϵ</mi><mo>&lt;</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>K</mi><mo>)</mo><mo>&lt;</mo><mi>α</mi><mo>,</mo></math></span></span></span> and the equation<span><span><span><math><mn>0</mn><mo>=</mo><mi>y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>K</mi><mo>,</mo></math></span></span></span> has exactly countably many distinct solutions. Specifically,<span><span><span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>:</mo><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo><mo>∩</mo><mi>K</mi><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>:</mo><mi>k</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></mrow><mo>∪</mo><mo>{</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> denotes the Hausdorff dimension, and <span><math><mn>1</mn><mo>/</mo><mi>m</mi></math></span>, <span><math><mi>m</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, represents the similarity ratio of <em>K</em>. Similar result can be proved for the Bedford-McMullen carpet.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129801"},"PeriodicalIF":1.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144314359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信