{"title":"A complete monotonicity theorem related to Fink's inequality with applications","authors":"Zhen-Hang Yang","doi":"10.1016/j.jmaa.2025.129600","DOIUrl":"10.1016/j.jmaa.2025.129600","url":null,"abstract":"<div><div>Let <em>F</em> be a completely monotonic function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span> for <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Fink in 1982 proved the inequality<span><span><span><math><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></span></span>for <span><math><mi>x</mi><mo>></mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> satisfy <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>≺</mo><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub></math></span>. Inspired by Fink's inequality, we further give the sufficient conditions for the function<span><span><span><math><mi>x</mi><mo>↦</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></s","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129600"},"PeriodicalIF":1.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"F4-Appell series in p-adic settings and their connections to algebraic curves","authors":"Shaik Azharuddin , Gautam Kalita","doi":"10.1016/j.jmaa.2025.129601","DOIUrl":"10.1016/j.jmaa.2025.129601","url":null,"abstract":"<div><div>Motivated by an expression for the number of points on an algebraic curve in terms of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series over finite fields, we here define a <em>p</em>-adic analog for the <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series. Consequently, we find a relation of the number of points on the algebraic curve with the <em>p</em>-adic <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series, extending the earlier result to all primes. Finally, we deduce some transformation formulas for the <em>p</em>-adic <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series analogous to their classical counterparts.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129601"},"PeriodicalIF":1.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On equations of Lund-Regge type","authors":"Arturo Benson, Alvaro Hidalgo, Enrique G. Reyes","doi":"10.1016/j.jmaa.2025.129596","DOIUrl":"10.1016/j.jmaa.2025.129596","url":null,"abstract":"<div><div>We introduce a new class of partial differential equations admitting a geometric interpretation, the class of equations <em>of Lund-Regge type</em>. These equations describe surfaces immersed in a three dimensional euclidean sphere, admit conservation laws, and they are the integrability condition of <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> overdetermined <span><math><mi>s</mi><mi>o</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>R</mi><mo>)</mo></math></span>-valued linear systems. As examples, we present equations describing minimal surfaces, equations describing spherical surfaces, a generalization of the integrable Konno-Oono coupled system, and an <em>elliptic Lund-Regge equation</em> that generalizes the sinh-Poisson equation of plasma physics. We also present a structural result on second order equations of Lund-Regge type.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129596"},"PeriodicalIF":1.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diego Chamorro , Anca-Nicoleta Marcoci , Liviu-Gabriel Marcoci
{"title":"A new pointwise inequality for rough operators and applications","authors":"Diego Chamorro , Anca-Nicoleta Marcoci , Liviu-Gabriel Marcoci","doi":"10.1016/j.jmaa.2025.129595","DOIUrl":"10.1016/j.jmaa.2025.129595","url":null,"abstract":"<div><div>We study in this article a new pointwise estimate for “rough” singular integral operators. From this pointwise estimate we will derive Sobolev type inequalities in a variety of functional spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129595"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph Fischbacher, Danie Paraiso, Chloe Povey-Rowe, Brady Zimmerman
{"title":"An analysis of non-selfadjoint first-order differential operators with non-local point interactions","authors":"Christoph Fischbacher, Danie Paraiso, Chloe Povey-Rowe, Brady Zimmerman","doi":"10.1016/j.jmaa.2025.129590","DOIUrl":"10.1016/j.jmaa.2025.129590","url":null,"abstract":"<div><div>We study the spectra of non-selfadjoint first-order operators on the interval with non-local point interactions, formally given by <span><math><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>V</mi><mo>+</mo><mi>k</mi><mo>〈</mo><mi>δ</mi><mo>,</mo><mo>⋅</mo><mo>〉</mo></math></span>. We give precise estimates on the location of the eigenvalues on the complex plane and prove that the root vectors of these operators form Riesz bases of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo>)</mo></math></span>. Under the additional assumption that the operator is maximally dissipative, we prove that it can have at most one real eigenvalue, and given any <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span>, we explicitly construct the unique operator realization such that <em>λ</em> is in its spectrum. We also investigate the time-evolution generated by these maximally dissipative operators.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129590"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143869840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calderón-Zygmund type estimate for the singular parabolic double-phase system","authors":"Wontae Kim","doi":"10.1016/j.jmaa.2025.129593","DOIUrl":"10.1016/j.jmaa.2025.129593","url":null,"abstract":"<div><div>This paper discusses the local Calderón-Zygmund type estimate for the singular parabolic double-phase system. The proof covers the counterpart <span><math><mi>p</mi><mo><</mo><mn>2</mn></math></span> of the result in <span><span>[23]</span></span>. Phase analysis is employed to determine an appropriate intrinsic geometry for each phase. Comparison estimates and scaling invariant properties for each intrinsic geometry are the main techniques to obtain the main estimate.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129593"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal convergence rate of the vanishing shear viscosity limit for one-dimensional isentropic planar MHD equations","authors":"Cailong Gao, Xia Ye","doi":"10.1016/j.jmaa.2025.129591","DOIUrl":"10.1016/j.jmaa.2025.129591","url":null,"abstract":"<div><div>In this paper, we consider the initial-boundary value problem for the one-dimensional isentropic planar magnetohydrodynamics (MHD) equations. Using asymptotic expansions, we study the expression of the boundary layer and the rate of convergence of the vanishing shear viscosity limit, which optimizes the convergence rate <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></math></span> of the results presented in reference Ye and Zhang <span><span>[35]</span></span> (2016) to <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129591"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Normalized solutions to the quasilinear Schrödinger system with p-Laplacian under the Lp-mass supercritical case","authors":"Yanan Liu , Ruifeng Zhang , Xiangyi Zhang","doi":"10.1016/j.jmaa.2025.129594","DOIUrl":"10.1016/j.jmaa.2025.129594","url":null,"abstract":"<div><div>Considering any dimension <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and for given <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span>, as well as a nonlinear term <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> exhibiting mass supercritical and Sobolev subcritical growth, we investigate the existence of normalized ground state solutions to the quasilinear Schrödinger equation with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-constraint via Nehari-Pohozaev manifold and minimizing method under appropriate assumptions of potential function <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Moreover, we give the asymptotic behavior for the ground state energy as <span><math><mi>a</mi><mo>→</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129594"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143855955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions","authors":"Zhipeng Shen, Baiyang Zhang","doi":"10.1016/j.jmaa.2025.129589","DOIUrl":"10.1016/j.jmaa.2025.129589","url":null,"abstract":"<div><div>Let <span><math><mi>Q</mi><mo>=</mo><msub><mrow><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> be a sequence of positive integers with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>. Then every <span><math><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is attached with a Cantor series expansion of the form<span><span><span><math><mi>x</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>+</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>.</mo></math></span></span></span> We study inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions. Several versions of generalized shrinking target sets are defined in our framework. We will give a complete metric theory of these object sets in the sense of Lebesgue measure, Hausdorff measure and Hausdorff dimension.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129589"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conditional divergence risk measures","authors":"Giulio Principi , Fabio Maccheroni","doi":"10.1016/j.jmaa.2025.129598","DOIUrl":"10.1016/j.jmaa.2025.129598","url":null,"abstract":"<div><div>Our paper contributes to the theory of conditional risk measures and conditional certainty equivalents. We adopt a random modular approach which proved to be effective in the study of modular convex analysis and conditional risk measures. In particular, we study the conditional counterpart of optimized certainty equivalents. In the process, we provide representation results for niveloids in the conditional <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-space. By employing such representation results we retrieve a conditional version of the variational formula for optimized certainty equivalents. In conclusion, we apply this formula to provide a variational representation of the conditional entropic risk measure.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129598"},"PeriodicalIF":1.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143868806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}