Wong-Zakai approximation for Landau-Lifshitz-Gilbert equation with anisotropy energy driven by geometric rough paths

IF 1.2 3区 数学 Q1 MATHEMATICS
Kistosil Fahim , Debopriya Mukherjee , Erika Hausenblas
{"title":"Wong-Zakai approximation for Landau-Lifshitz-Gilbert equation with anisotropy energy driven by geometric rough paths","authors":"Kistosil Fahim ,&nbsp;Debopriya Mukherjee ,&nbsp;Erika Hausenblas","doi":"10.1016/j.jmaa.2025.129885","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the one-dimensional Rough Landau–Lifshitz–Gilbert Equation (RLLGE) in the presence of nonzero exchange and anisotropy energies, using Lyons' rough path theory. The solutions are constrained to lie on the two-dimensional unit sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, and we prove the existence and uniqueness of strong solutions within this geometric setting. Since the equation evolves on a manifold, a central difficulty arises in approximating geometric rough paths in a regular and controlled manner. We conduct a detailed analysis of the limiting equation, the associated correction term, and its convergence rate in the controlled rough path framework. The construction of solutions and the convergence analysis rely on several key techniques: the Doss–Sussmann transformation, maximal regularity results, and the theory of geometric rough paths. Together, these tools ensure a rigorous treatment of the problem and allow us to capture the essential rough structure of the dynamics.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129885"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006663","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the one-dimensional Rough Landau–Lifshitz–Gilbert Equation (RLLGE) in the presence of nonzero exchange and anisotropy energies, using Lyons' rough path theory. The solutions are constrained to lie on the two-dimensional unit sphere S2R3, and we prove the existence and uniqueness of strong solutions within this geometric setting. Since the equation evolves on a manifold, a central difficulty arises in approximating geometric rough paths in a regular and controlled manner. We conduct a detailed analysis of the limiting equation, the associated correction term, and its convergence rate in the controlled rough path framework. The construction of solutions and the convergence analysis rely on several key techniques: the Doss–Sussmann transformation, maximal regularity results, and the theory of geometric rough paths. Together, these tools ensure a rigorous treatment of the problem and allow us to capture the essential rough structure of the dynamics.
几何粗糙路径驱动的各向异性能量Landau-Lifshitz-Gilbert方程的Wong-Zakai近似
利用Lyons粗糙路径理论,研究了非零交换能量和各向异性能量存在下的一维粗糙Landau-Lifshitz-Gilbert方程(RLLGE)。这些解被约束在二维单位球S2∧R3上,并证明了在这个几何集合内强解的存在唯一性。由于方程是在流形上演化的,因此以规则和可控的方式近似几何粗糙路径就出现了一个中心困难。详细分析了控制粗糙路径框架下的极限方程、相关修正项及其收敛速度。解的构造和收敛性分析依赖于几个关键技术:Doss-Sussmann变换、最大正则性结果和几何粗糙路径理论。总之,这些工具确保了对问题的严格处理,并允许我们捕获动力学的基本粗略结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信