(−1)rΔrlog (p)/nαn的渐近增长和p (n)/nαn的反高阶Turán不等式

IF 1.2 3区 数学 Q1 MATHEMATICS
Gargi Mukherjee
{"title":"(−1)rΔrlog (p)/nαn的渐近增长和p (n)/nαn的反高阶Turán不等式","authors":"Gargi Mukherjee","doi":"10.1016/j.jmaa.2025.129884","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the overpartition function. In this paper, we study the asymptotic growth of finite difference of logarithm of <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></math></span> for <em>α</em> being a non-negative real number. Consequently, we retrieve log-convexity of <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> and <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi></mrow><mrow><mi>n</mi></mrow></mroot></math></span>, previously studied by the author aligned to the work of Chen and Zheng in context of the partition function <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. Generalizing the theme of log-convexity, began with the work of Sun, Chen, and Zheng, another main objective of this paper is to prove that <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></math></span> satisfies the reverse higher order Turán inequalities which depict the non real-rootedness of the Jensen polynomial associated with the sequence presented above.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129884"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic growth of (−1)rΔrlog⁡p‾(n)/nαn and the reverse higher order Turán inequalities for p‾(n)/nαn\",\"authors\":\"Gargi Mukherjee\",\"doi\":\"10.1016/j.jmaa.2025.129884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the overpartition function. In this paper, we study the asymptotic growth of finite difference of logarithm of <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></math></span> for <em>α</em> being a non-negative real number. Consequently, we retrieve log-convexity of <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> and <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi></mrow><mrow><mi>n</mi></mrow></mroot></math></span>, previously studied by the author aligned to the work of Chen and Zheng in context of the partition function <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. Generalizing the theme of log-convexity, began with the work of Sun, Chen, and Zheng, another main objective of this paper is to prove that <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></math></span> satisfies the reverse higher order Turán inequalities which depict the non real-rootedness of the Jensen polynomial associated with the sequence presented above.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129884\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006651\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006651","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设p - (n)表示过配分函数。本文研究了α为非负实数时p - (n)/n - α -n的对数有限差分的渐近增长。因此,我们检索p形式(n)n和p形式(n)/nn的log-凸性,先前由作者在配分函数p(n)的背景下与Chen和Zheng的工作相一致研究。推广log-凸性的主题,开始与孙,陈,和郑的工作,本文的另一个主要目标是证明p的(n)/nαn满足反高阶Turán不等式,它描述了与上述序列相关的詹森多项式的非实数根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic growth of (−1)rΔrlog⁡p‾(n)/nαn and the reverse higher order Turán inequalities for p‾(n)/nαn
Let p(n) denote the overpartition function. In this paper, we study the asymptotic growth of finite difference of logarithm of p(n)/nαn for α being a non-negative real number. Consequently, we retrieve log-convexity of p(n)n and p(n)/nn, previously studied by the author aligned to the work of Chen and Zheng in context of the partition function p(n). Generalizing the theme of log-convexity, began with the work of Sun, Chen, and Zheng, another main objective of this paper is to prove that p(n)/nαn satisfies the reverse higher order Turán inequalities which depict the non real-rootedness of the Jensen polynomial associated with the sequence presented above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信