{"title":"(−1)rΔrlog (p)/nαn的渐近增长和p (n)/nαn的反高阶Turán不等式","authors":"Gargi Mukherjee","doi":"10.1016/j.jmaa.2025.129884","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the overpartition function. In this paper, we study the asymptotic growth of finite difference of logarithm of <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></math></span> for <em>α</em> being a non-negative real number. Consequently, we retrieve log-convexity of <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> and <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi></mrow><mrow><mi>n</mi></mrow></mroot></math></span>, previously studied by the author aligned to the work of Chen and Zheng in context of the partition function <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. Generalizing the theme of log-convexity, began with the work of Sun, Chen, and Zheng, another main objective of this paper is to prove that <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></math></span> satisfies the reverse higher order Turán inequalities which depict the non real-rootedness of the Jensen polynomial associated with the sequence presented above.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129884"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic growth of (−1)rΔrlogp‾(n)/nαn and the reverse higher order Turán inequalities for p‾(n)/nαn\",\"authors\":\"Gargi Mukherjee\",\"doi\":\"10.1016/j.jmaa.2025.129884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the overpartition function. In this paper, we study the asymptotic growth of finite difference of logarithm of <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></math></span> for <em>α</em> being a non-negative real number. Consequently, we retrieve log-convexity of <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> and <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi></mrow><mrow><mi>n</mi></mrow></mroot></math></span>, previously studied by the author aligned to the work of Chen and Zheng in context of the partition function <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. Generalizing the theme of log-convexity, began with the work of Sun, Chen, and Zheng, another main objective of this paper is to prove that <span><math><mroot><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></math></span> satisfies the reverse higher order Turán inequalities which depict the non real-rootedness of the Jensen polynomial associated with the sequence presented above.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129884\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006651\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006651","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic growth of (−1)rΔrlogp‾(n)/nαn and the reverse higher order Turán inequalities for p‾(n)/nαn
Let denote the overpartition function. In this paper, we study the asymptotic growth of finite difference of logarithm of for α being a non-negative real number. Consequently, we retrieve log-convexity of and , previously studied by the author aligned to the work of Chen and Zheng in context of the partition function . Generalizing the theme of log-convexity, began with the work of Sun, Chen, and Zheng, another main objective of this paper is to prove that satisfies the reverse higher order Turán inequalities which depict the non real-rootedness of the Jensen polynomial associated with the sequence presented above.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.