{"title":"Large sums of symmetric power coefficients of holomorphic cusp forms","authors":"Theran Bassett, Alia Hamieh","doi":"10.1016/j.jmaa.2025.129878","DOIUrl":null,"url":null,"abstract":"<div><div>Given a non-CM primitive cusp form <em>f</em> of even weight <em>k</em> and level <em>N</em>, we let <span><math><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>f</mi></math></span> denote the <em>m</em>-th symmetric power lift of <em>f</em>. We denote by <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> the sequence of normalized coefficients of the Dirichlet series associated to the <em>L</em>-function of <span><math><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>f</mi></math></span>. In this paper, we investigate the range of <em>x</em> (in terms of <em>k</em> and <em>N</em>) for which there are cancellations in the sum <span><math><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>f</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≤</mo><mi>x</mi></mrow></msub><msub><mrow><mi>λ</mi></mrow><mrow><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. We first prove that <span><math><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><mi>x</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>x</mi><mo>)</mo></math></span> implies that <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo><</mo><mn>0</mn></math></span> for some <span><math><mi>n</mi><mo>≤</mo><mi>x</mi></math></span>. Assuming the Generalized Riemann Hypothesis (GRH) for <span><math><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>f</mi><mo>)</mo></math></span>, we also show that <span><math><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>f</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>o</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>x</mi><msup><mrow><mi>log</mi></mrow><mrow><mi>m</mi></mrow></msup><mo></mo><mi>x</mi><mo>)</mo></math></span> in the range <span><math><mi>log</mi><mo></mo><mi>x</mi><mo>/</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>k</mi><mi>N</mi><mo>→</mo><mo>∞</mo></math></span> and <span><math><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mi>y</mi><msup><mrow><mi>m</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>f</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>o</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>ϵ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> in the range <span><math><mi>x</mi><mo>></mo><msup><mrow><mo>(</mo><mi>k</mi><mi>N</mi><mo>)</mo></mrow><mrow><mi>ϵ</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129878"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006596","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a non-CM primitive cusp form f of even weight k and level N, we let denote the m-th symmetric power lift of f. We denote by the sequence of normalized coefficients of the Dirichlet series associated to the L-function of . In this paper, we investigate the range of x (in terms of k and N) for which there are cancellations in the sum . We first prove that implies that for some . Assuming the Generalized Riemann Hypothesis (GRH) for , we also show that in the range and in the range .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.