Dichotomy gap conditions for the existence of smooth inertial manifolds for non-instantaneous impulsive parabolic equations

IF 1.2 3区 数学 Q1 MATHEMATICS
Xuan-Quang Bui
{"title":"Dichotomy gap conditions for the existence of smooth inertial manifolds for non-instantaneous impulsive parabolic equations","authors":"Xuan-Quang Bui","doi":"10.1016/j.jmaa.2025.129880","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the fully non-autonomous semilinear parabolic equation <span><math><mfrac><mrow><mi>d</mi><mi>x</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>+</mo><mi>A</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>x</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> under certain non-instantaneous impulsive effects. Using the Lyapunov–Perron method, we provide dichotomy gap conditions, where the dichotomy gap <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is compared to <span><math><msub><mrow><mi>sup</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mi>R</mi></mrow></msub><mo>⁡</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></msubsup><msup><mrow><mo>(</mo><mi>φ</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>τ</mi></math></span>, for the existence of an inertial manifold for the non-instantaneous impulsive parabolic equations. Moreover, we investigate the regularity of the inertial manifolds under the condition on the regularity of the nonlinear term. We will discuss a consequence of the obtained results for the parabolic equations without impulses. Finally, we apply our abstract results to a nonautonomous reaction-diffusion equation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129880"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006614","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the fully non-autonomous semilinear parabolic equation dxdt+A(t)x=f(t,x) under certain non-instantaneous impulsive effects. Using the Lyapunov–Perron method, we provide dichotomy gap conditions, where the dichotomy gap Λnλn is compared to suptRt1t(φ(τ))2dτ, for the existence of an inertial manifold for the non-instantaneous impulsive parabolic equations. Moreover, we investigate the regularity of the inertial manifolds under the condition on the regularity of the nonlinear term. We will discuss a consequence of the obtained results for the parabolic equations without impulses. Finally, we apply our abstract results to a nonautonomous reaction-diffusion equation.
非瞬时脉冲抛物型方程光滑惯性流形存在的二分间隙条件
研究了在非瞬时脉冲作用下的完全非自治半线性抛物方程dxdt+A(t)x=f(t,x)。利用Lyapunov-Perron方法,我们给出了非瞬时脉冲抛物方程存在惯性流形的二分间隙条件,其中二分间隙Λn−Λn与supt∈R∈∫t−1t(φ(τ))2dτ比较。在非线性项具有正则性的条件下,研究了惯性流形的正则性。我们将讨论无脉冲抛物方程的所得结果的一个推论。最后,我们将抽象结果应用于非自治反应扩散方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信