图像处理的一般变指数拟线性椭圆问题和Neumann边界条件

IF 1.2 3区 数学 Q1 MATHEMATICS
Bogdan Maxim
{"title":"图像处理的一般变指数拟线性椭圆问题和Neumann边界条件","authors":"Bogdan Maxim","doi":"10.1016/j.jmaa.2025.129874","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is to state and prove existence and uniqueness results for a general elliptic problem with homogeneous Neumann boundary conditions, often associated with image processing tasks like denoising. The novelty is that we surpass the lack of coercivity of the Euler-Lagrange functional with an innovative technique that has at its core the idea of showing that the minimum of the energy functional over a subset of the space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> coincides with the global minimum. The obtained existence result applies to multiple-phase elliptic problems under remarkably weak assumptions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129874"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general quasilinear elliptic problem with variable exponents and Neumann boundary conditions for image processing\",\"authors\":\"Bogdan Maxim\",\"doi\":\"10.1016/j.jmaa.2025.129874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this paper is to state and prove existence and uniqueness results for a general elliptic problem with homogeneous Neumann boundary conditions, often associated with image processing tasks like denoising. The novelty is that we surpass the lack of coercivity of the Euler-Lagrange functional with an innovative technique that has at its core the idea of showing that the minimum of the energy functional over a subset of the space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> coincides with the global minimum. The obtained existence result applies to multiple-phase elliptic problems under remarkably weak assumptions.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129874\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006559\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006559","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是陈述和证明具有齐次诺伊曼边界条件的一般椭圆问题的存在性和唯一性结果,通常与去噪等图像处理任务相关。新颖之处在于,我们用一种创新的技术超越了欧拉-拉格朗日泛函缺乏矫顽力的问题,该技术的核心思想是表明空间W1,p(x)(Ω)子集上的能量泛函的最小值与全局最小值一致。所得的存在性结果适用于在非常弱的假设条件下的多相椭圆问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general quasilinear elliptic problem with variable exponents and Neumann boundary conditions for image processing
The aim of this paper is to state and prove existence and uniqueness results for a general elliptic problem with homogeneous Neumann boundary conditions, often associated with image processing tasks like denoising. The novelty is that we surpass the lack of coercivity of the Euler-Lagrange functional with an innovative technique that has at its core the idea of showing that the minimum of the energy functional over a subset of the space W1,p(x)(Ω) coincides with the global minimum. The obtained existence result applies to multiple-phase elliptic problems under remarkably weak assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信