The exact dimension of Liouville numbers: The Fourier side

IF 1.2 3区 数学 Q1 MATHEMATICS
Iván Polasek , Ezequiel Rela
{"title":"The exact dimension of Liouville numbers: The Fourier side","authors":"Iván Polasek ,&nbsp;Ezequiel Rela","doi":"10.1016/j.jmaa.2025.129872","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we study the generalized Fourier dimension of the set of Liouville numbers <span><math><mi>L</mi></math></span>. Being a set of zero Hausdorff dimension, the analysis has to be done at the level of functions with a slow decay at infinity acting as control for the Fourier transform of (Rajchman) measures supported on <span><math><mi>L</mi></math></span>. We give an almost complete characterization of admissible decays for this set in terms of comparison to power-like functions. This work can be seen as the “Fourier side” of the analysis made by Olsen and Renfro regarding the generalized Hausdorff dimension using gauge functions. We also provide an approach to deal with the problem of classifying oscillating candidates for a Fourier decay for <span><math><mi>L</mi></math></span> relying on its translation invariance property.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129872"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006535","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we study the generalized Fourier dimension of the set of Liouville numbers L. Being a set of zero Hausdorff dimension, the analysis has to be done at the level of functions with a slow decay at infinity acting as control for the Fourier transform of (Rajchman) measures supported on L. We give an almost complete characterization of admissible decays for this set in terms of comparison to power-like functions. This work can be seen as the “Fourier side” of the analysis made by Olsen and Renfro regarding the generalized Hausdorff dimension using gauge functions. We also provide an approach to deal with the problem of classifying oscillating candidates for a Fourier decay for L relying on its translation invariance property.
刘维尔数的精确维数,傅里叶边
在本文中,我们研究了Liouville数集合l的广义傅里叶维数。作为一个零豪斯多夫维数的集合,分析必须在函数的水平上进行,在无穷远处有一个缓慢的衰减,作为l上支持的(Rajchman)测度的傅里叶变换的控制。我们通过与幂函数的比较给出了这个集合的可容许衰减的几乎完整的表征。这项工作可以看作是Olsen和Renfro使用规范函数对广义Hausdorff维数进行分析的“傅立叶方面”。我们还提供了一种方法来处理L的傅立叶衰减的振荡候选者的分类问题,依赖于它的平移不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信