Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
Some properties of new sequence spaces based on Riordan numbers 基于瑞尔丹数的新序列空间的一些特性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-24 DOI: 10.1016/j.jmaa.2024.128902
Naim L. Braha , Toufik Mansour
{"title":"Some properties of new sequence spaces based on Riordan numbers","authors":"Naim L. Braha ,&nbsp;Toufik Mansour","doi":"10.1016/j.jmaa.2024.128902","DOIUrl":"10.1016/j.jmaa.2024.128902","url":null,"abstract":"<div><div>In this paper, we define a new class of sequence spaces via Riordan numbers and prove their topological properties, and inclusion relations, obtain Schauder basis, and describe <span><math><mi>α</mi><mo>,</mo><mi>β</mi></math></span> and <em>γ</em> duals of them. We have given conditions under which there is matrix transformation between those new sequence spaces and the well-known classical sequence spaces. In the last part, we are given some results related to some special operator classes, such as approximable operators, nuclear operators, and ideal operators.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive multi-bump solutions for the Schrödinger equation with slow decaying competing potentials 具有慢衰减竞争势的薛定谔方程的正多凸块解
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-24 DOI: 10.1016/j.jmaa.2024.128904
Boling Tang , Hui Guo , Tao Wang
{"title":"Positive multi-bump solutions for the Schrödinger equation with slow decaying competing potentials","authors":"Boling Tang ,&nbsp;Hui Guo ,&nbsp;Tao Wang","doi":"10.1016/j.jmaa.2024.128904","DOIUrl":"10.1016/j.jmaa.2024.128904","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We are concerned with the existence of multi-bump solutions to the following nonlinear Schrödinger equation with competing potentials &lt;em&gt;V&lt;/em&gt; and &lt;em&gt;Q&lt;/em&gt;,&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;, &lt;em&gt;V&lt;/em&gt; and &lt;em&gt;Q&lt;/em&gt; are radial functions having the following slow algebraic decay with &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;,&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt; as &lt;/mtext&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mtext&gt;,&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. By introducing a weighted norm and some delicate analysis, we construct infinitely many new positive multi-bump solutions for &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; or &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. The maximum points of these bump solutions lie on the top and bottom circles of a cylinder near the infinity. This result complements and extends the existence results of multi-bump solutions in &lt;span&gt;&lt;span&gt;[2]&lt;/span&gt;&lt;/span&gt;, &lt;s","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sobolev projection on quantum torus, its complete boundedness and applications 量子环上的索波列夫投影、其完全有界性及其应用
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-24 DOI: 10.1016/j.jmaa.2024.128906
Fedor Sukochev , Kanat Tulenov , Dmitriy Zanin
{"title":"Sobolev projection on quantum torus, its complete boundedness and applications","authors":"Fedor Sukochev ,&nbsp;Kanat Tulenov ,&nbsp;Dmitriy Zanin","doi":"10.1016/j.jmaa.2024.128906","DOIUrl":"10.1016/j.jmaa.2024.128906","url":null,"abstract":"<div><div>In this paper, we establish the complete boundedness of Sobolev projection from <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>θ</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></math></span> into <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub><mo>(</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>θ</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></math></span>. In the special case <span><math><mi>θ</mi><mo>=</mo><mn>0</mn></math></span>, our results strengthen the classical results due to Berkson, Bourgain, Pelczynski and Wojciechowski.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Haagerup noncommutative quasi Hp(A) spaces 论 Haagerup 非交换准 Hp(A) 空间
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-24 DOI: 10.1016/j.jmaa.2024.128905
Turdebek N. Bekjan
{"title":"On Haagerup noncommutative quasi Hp(A) spaces","authors":"Turdebek N. Bekjan","doi":"10.1016/j.jmaa.2024.128905","DOIUrl":"10.1016/j.jmaa.2024.128905","url":null,"abstract":"<div><div>Let <span><math><mi>M</mi></math></span> be a <em>σ</em>-finite von Neumann algebra, equipped with a normal faithful state <em>φ</em>, and let <span><math><mi>A</mi></math></span> be a maximal subdiagonal subalgebra of <span><math><mi>M</mi></math></span>. We have proved that for <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn></math></span>, <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is independent of <em>φ</em>. Furthermore, in the case that <span><math><mi>A</mi></math></span> is a type 1 subdiagonal subalgebra, we have obtained an interpolation theorem for <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> in the case where <span><math><mn>0</mn><mo>&lt;</mo><mi>θ</mi><mo>&lt;</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>∞</mo></math></span> and <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>θ</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation orders of real numbers in beta-dynamical systems 贝塔动力系统中实数的近似阶数
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-24 DOI: 10.1016/j.jmaa.2024.128895
Xiaoqiong Wang , Rao Li , Fan Lü
{"title":"Approximation orders of real numbers in beta-dynamical systems","authors":"Xiaoqiong Wang ,&nbsp;Rao Li ,&nbsp;Fan Lü","doi":"10.1016/j.jmaa.2024.128895","DOIUrl":"10.1016/j.jmaa.2024.128895","url":null,"abstract":"<div><div>For any real numbers <span><math><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><mi>β</mi><mo>&gt;</mo><mn>1</mn></math></span>, denote by <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> the partial sum of the first <em>n</em> terms in the <em>β</em>-expansion of <em>x</em>. It is known that for any <span><math><mi>β</mi><mo>&gt;</mo><mn>1</mn></math></span> and almost all <span><math><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, or for any <span><math><mi>x</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and almost all <span><math><mi>β</mi><mo>&gt;</mo><mn>1</mn></math></span>, the approximation order of <em>x</em> by <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> is <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup></math></span>. Let <span><math><mi>φ</mi><mo>:</mo><mi>N</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> be a positive function. In this paper, we study the Hausdorff dimensions of the following two sets<span><span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>(</mo><mi>φ</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>:</mo><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mfrac><mrow><msub><mrow><mi>log</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>x</mi><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>φ</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mi>φ</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>β</mi><mo>&gt;</mo><mn>1</mn><mo>:</mo><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mfrac><mrow><msub><mrow><mi>log</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>x</mi><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>φ</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mo>,</mo></math></span></span></span> and complement the dimension theoretic results of these sets in <span><span>[3]</span></span>, <span><span>[6]</span></span> and <span><span>[18]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best Ulam constants for damped linear oscillators with variable coefficients 具有可变系数的阻尼线性振荡器的最佳乌拉姆常数
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-24 DOI: 10.1016/j.jmaa.2024.128908
Douglas R. Anderson , Masakazu Onitsuka , Donal O'Regan
{"title":"Best Ulam constants for damped linear oscillators with variable coefficients","authors":"Douglas R. Anderson ,&nbsp;Masakazu Onitsuka ,&nbsp;Donal O'Regan","doi":"10.1016/j.jmaa.2024.128908","DOIUrl":"10.1016/j.jmaa.2024.128908","url":null,"abstract":"<div><div>An associated Riccati equation is used to study the Ulam stability of non-autonomous linear differential equations that model the damped linear oscillator. In particular, the best (minimal) Ulam constants for these equations are derived. These robust results apply to equations with solutions that blow up in finite time, as well as to equations with solutions that exist globally on <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. Illustrative, non-trivial examples are presented, highlighting the main results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave-front tracking for a quasi-linear scalar conservation law with hysteresis 带滞后的准线性标量守恒定律的波前跟踪
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-23 DOI: 10.1016/j.jmaa.2024.128900
Fabio Bagagiolo, Stefan Moreti
{"title":"Wave-front tracking for a quasi-linear scalar conservation law with hysteresis","authors":"Fabio Bagagiolo,&nbsp;Stefan Moreti","doi":"10.1016/j.jmaa.2024.128900","DOIUrl":"10.1016/j.jmaa.2024.128900","url":null,"abstract":"<div><div>In this article we deal with the Cauchy problem for the quasi-linear scalar conservation law<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>F</mi><msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> where <span><math><mi>F</mi></math></span> is a specific hysteresis operator, namely the Play operator. Hysteresis models a rate-independent memory relationship between the input <em>u</em> and its output. Its presence in the partial differential equation gives a particular non-local feature to the latter allowing us to capture phenomena that may arise in some application fields. Riemann problems and the interactions between shock lines are studied and via the so-called Wave-Front Tracking method a solution to the Cauchy problem with bounded variation initial data is constructed. The solution found satisfies an entropy-like condition, making it the unique solution in the class of entropy admissible ones.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An invariant for affine maximal type equations 仿射最大类型方程的不变量
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-23 DOI: 10.1016/j.jmaa.2024.128898
Zhao Lian
{"title":"An invariant for affine maximal type equations","authors":"Zhao Lian","doi":"10.1016/j.jmaa.2024.128898","DOIUrl":"10.1016/j.jmaa.2024.128898","url":null,"abstract":"<div><div>Let <span><math><mi>y</mi><mo>:</mo><mi>M</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be a locally strongly convex hypersurface immersion of a smooth, connected manifold into the real affine space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, given as the graph of a smooth, strictly convex function <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> defined on a domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Considering the <em>α</em>-relative normalization of the graph of the convex function <em>f</em>, we will prove a Bernstein theorem for a class of nonlinear, fourth order partial differential equations of affine maximal type. As applications, we define an invariant of the equations and prove a rigidity result of the complete <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-invariant Kähler metric on complex torus <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> with vanishing scalar curvature for <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on kernel functions of Dirichlet spaces 关于 Dirichlet 空间核函数的说明
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-23 DOI: 10.1016/j.jmaa.2024.128897
Sahil Gehlawat , Aakanksha Jain , Amar Deep Sarkar
{"title":"A note on kernel functions of Dirichlet spaces","authors":"Sahil Gehlawat ,&nbsp;Aakanksha Jain ,&nbsp;Amar Deep Sarkar","doi":"10.1016/j.jmaa.2024.128897","DOIUrl":"10.1016/j.jmaa.2024.128897","url":null,"abstract":"<div><div>For a planar domain Ω, we consider the Dirichlet spaces with respect to a base point <span><math><mi>ζ</mi><mo>∈</mo><mi>Ω</mi></math></span> and the corresponding kernel functions. It is not known how these kernel functions behave as we vary the base point. In this note, we prove that these kernel functions vary smoothly. As an application of the smoothness result, we prove a Ramadanov-type theorem for these kernel functions on <span><math><mi>Ω</mi><mo>×</mo><mi>Ω</mi></math></span>. This extends the previously known convergence results of these kernel functions. In fact, we have made these observations in a more general setting, that is, for weighted kernel functions and their higher-order counterparts.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ap weights and an application to Hankel operators on Fock spaces with variable exponents on Cn Ap 权重及其在 Cn 上具有可变指数的 Fock 空间上的汉克尔算子中的应用
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2024-09-23 DOI: 10.1016/j.jmaa.2024.128899
Agbor Dieudonne Agbor, Forwa Kingsley Njem
{"title":"Ap weights and an application to Hankel operators on Fock spaces with variable exponents on Cn","authors":"Agbor Dieudonne Agbor,&nbsp;Forwa Kingsley Njem","doi":"10.1016/j.jmaa.2024.128899","DOIUrl":"10.1016/j.jmaa.2024.128899","url":null,"abstract":"<div><div>We characterize <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> weights for <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> and via extrapolation we characterize boundedness and compactness of Hankel operators between Fock spaces of variable exponent and the Lebesgue spaces of variable exponents. We also give some characterizations of the symbol class which is some <em>BMO</em>-type spaces with variable exponent on the complex plane <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信