{"title":"On the evolution problem for the non-parametric prescribed mean curvature equation","authors":"Maria Michaela Porzio , Giuseppe Riey","doi":"10.1016/j.jmaa.2025.129420","DOIUrl":"10.1016/j.jmaa.2025.129420","url":null,"abstract":"<div><div>We study existence and regularity of the solutions to the prescribed mean curvature flow in non-parametric form.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129420"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-improving boundedness of the maximal operator on quasi-Banach lattices over spaces of homogeneous type","authors":"Alina Shalukhina","doi":"10.1016/j.jmaa.2025.129419","DOIUrl":"10.1016/j.jmaa.2025.129419","url":null,"abstract":"<div><div>We prove the self-improvement property of the Hardy–Littlewood maximal operator on quasi-Banach lattices with the Fatou property in the setting of spaces of homogeneous type. Our result is a generalization of the boundedness criterion obtained in 2010 by Lerner and Ombrosi for maximal operators on quasi-Banach function spaces over Euclidean spaces. The specialty of the proof for spaces of homogeneous type lies in using adjacent grids of Hytönen–Kairema dyadic cubes and studying the maximal operator alongside its “dyadic” version. Then we apply the obtained result to variable Lebesgue spaces over spaces of homogeneous type.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129419"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sublinear positone and semipositone problems on the exterior of a ball in R2","authors":"Anumol Joseph , Lakshmi Sankar","doi":"10.1016/j.jmaa.2025.129423","DOIUrl":"10.1016/j.jmaa.2025.129423","url":null,"abstract":"<div><div>We study positive solutions to problems of the form,<span><span><span>(0.1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi></mtd><mtd><mo>=</mo><mi>λ</mi><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext> in </mtext><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>c</mi></mrow></msubsup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext> on </mtext><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>c</mi></mrow></msubsup><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>></mo><mn>1</mn><mo>}</mo></math></span>, <em>λ</em> is a positive parameter, <span><math><mi>K</mi><mo>:</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>c</mi></mrow></msubsup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> belongs to a class of Hölder continuous functions which satisfy certain decay assumptions and <span><math><mi>f</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mi>R</mi></math></span> belongs to a class of Hölder continuous functions which are sublinear. For a class of positone problems of the form <span><span>(0.1)</span></span>, we establish the existence of multiple positive solutions for a range of the parameter <em>λ</em> and uniqueness of positive solutions for either sufficiently large or small values of <em>λ</em>. Additionally, we obtain an existence result for a semipositone problem of the form <span><span>(0.1)</span></span>. Our results extend the study of similar problems on exterior domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>></mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129423"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiong Lin , Jianfei Wang , Mingxin Chen , Qihua Ruan
{"title":"Rigidity of boundary Schwarz lemma between nonequidimensional unit balls","authors":"Xiong Lin , Jianfei Wang , Mingxin Chen , Qihua Ruan","doi":"10.1016/j.jmaa.2025.129416","DOIUrl":"10.1016/j.jmaa.2025.129416","url":null,"abstract":"<div><div>In this paper, we prove a new boundary Schwarz lemma for holomorphic mappings between nonequidimensional unit balls. As an application, a new rigidity theorem for holomorphic mappings between the unit ball <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is established, where <span><math><mi>N</mi><mo>≥</mo><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>. In particular, when <span><math><mi>N</mi><mo>=</mo><mi>n</mi></math></span>, our result reduces to that of Liu and Tang.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129416"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the moment problem and the linear difference equations with periodic coefficients","authors":"R. Ben Taher , M. Rachidi , A. Taia","doi":"10.1016/j.jmaa.2025.129415","DOIUrl":"10.1016/j.jmaa.2025.129415","url":null,"abstract":"<div><div>The aim of this paper is to study the problem of moments linked to real sequences that are solutions of a linear difference equation of order <em>r</em>, whose coefficients are variable and periodic of period <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>. We generate subsequences of such a sequence which satisfy a new linear recurrence equation with constant coefficients. Therefore, through the distributional formulation of these subsequences, new results related to the corresponding moment problem are established. Furthermore, some open questions on the connection between the moment problem for the original recursive sequence with periodic coefficients, and the moment problem for its related <em>p</em> recursive subsequences with constant coefficients, have been raised. To offer an initial perspective on our problem, the special cases <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> are exposed, and illustrative numerical examples are provided.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129415"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the spectra of tridiagonal non-symmetric matrices","authors":"Saad R. El-Shabrawy, Asmaa M. Shindy","doi":"10.1016/j.jmaa.2025.129421","DOIUrl":"10.1016/j.jmaa.2025.129421","url":null,"abstract":"<div><div>A study is made of the spectra of infinite tridiagonal matrices as operators on the Hahn sequence space h and the space <span><math><msub><mrow><mi>bv</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of null sequences of bounded variation. The study includes: the spectrum, the point spectrum, the residual spectrum and the continuous spectrum of the considered matrices. It is shown that the method used in this paper is suitable also for determining the spectra of triangular double-band matrices and the Jacobi matrices.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129421"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Singularity formation for the compressible non-isentropic Euler equations with time-dependent damping","authors":"Dong Wang, Xinghong Pan, Jiang Xu","doi":"10.1016/j.jmaa.2025.129417","DOIUrl":"10.1016/j.jmaa.2025.129417","url":null,"abstract":"<div><div>In this paper, we mainly study the blow up phenomenon to classical solutions of compressible non-isentropic Euler equations with time-dependent damping <span><math><mfrac><mrow><mi>a</mi></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>λ</mi></mrow></msup></mrow></mfrac><mi>u</mi></math></span> in one space dimension. By constructing the decoupled Riccati equation, we show that <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> solutions will blow up in finite time when the adiabatic gas constant <span><math><mn>1</mn><mo><</mo><mi>γ</mi><mo><</mo><mn>3</mn></math></span> and the damping coefficient <span><math><mi>λ</mi><mo>≥</mo><mn>0</mn></math></span> if the initial data satisfies suitable condition. Moreover, when the initial data is small enough, we can see that the blow up comes from derivatives of the solution.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129417"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bifurcation from interval and positive solutions of Minkowski-curvature on unbounded domain","authors":"Tianlan Chen","doi":"10.1016/j.jmaa.2025.129422","DOIUrl":"10.1016/j.jmaa.2025.129422","url":null,"abstract":"<div><div>We construct the bifurcation of interval of positive radial solutions from the trivial solution to the following Minkowski-curvature problems on unbounded domains<span><span><span><math><mo>−</mo><mtext>div</mtext><mo>(</mo><mfrac><mrow><mi>∇</mi><mi>u</mi></mrow><mrow><msqrt><mrow><mn>1</mn><mo>−</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo><mo>=</mo><mi>λ</mi><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span><span><span><span><math><mi>u</mi><mo>→</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mtext>as</mtext><mspace></mspace><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>+</mo><mo>∞</mo><mo>,</mo></math></span></span></span> where <em>f</em> is not necessarily linearizable at zero. The proof of main results are based on the topological degree and global bifurcation techniques.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129422"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence and uniqueness of a time-periodic strong solution to incompressible Navier-Stokes equations in a time-periodic moving domain, describing the blood flow in an artificial heart","authors":"Arian Novruzi, Fayaud Mezatio","doi":"10.1016/j.jmaa.2025.129410","DOIUrl":"10.1016/j.jmaa.2025.129410","url":null,"abstract":"<div><div>In this paper, we prove the existence and uniqueness result of a strong time-periodic solution <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>p</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span> to incompressible Navier-Stokes equations in a time-periodic moving domain in dimension <span><math><mi>N</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>. The boundary of the moving domain is a <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msup></mrow></mfrac><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> local perturbation of the boundary of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> fixed domain, where <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msup><mo>></mo><mi>N</mi></math></span>. The proof is based on a trace lifting technique for transforming the moving domain problem into a fixed domain one, a time-dependent strong solution of a divergence problem, and the implicit function theorem. Our study model describes blood movement in a fluid-driven or mechanically powered artificial heart prototype.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129410"},"PeriodicalIF":1.2,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of two species predator-prey model with spatially nonhomogeneous diffusion strategy","authors":"Li Ma , Haihua Liang , Huatao Wang","doi":"10.1016/j.jmaa.2025.129412","DOIUrl":"10.1016/j.jmaa.2025.129412","url":null,"abstract":"<div><div>In this paper, we investigate a Holling type-II predator-prey system with spatially nonhomogeneous diffusion strategy. By employing the methods of the implicit function theorem, eigenvalue theory and bifurcation theory, we analyze the stability/instability of the positive steady state and explore the existence of a Hopf bifurcation when the diffusion rate is large. Furthermore, when the driven diffusion functions <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>q</mi><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup></math></span> and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>≡</mo><mn>1</mn></math></span>, we detailed discuss how the parameter <em>q</em> of the density dependent diffusion <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> affect the occurrence of Hopf bifurcations and the values of Hopf bifurcations.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129412"},"PeriodicalIF":1.2,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}