{"title":"Connections and Finsler geometry of the structure group of a JB-algebra","authors":"Gabriel Larotonda , José Luna","doi":"10.1016/j.jmaa.2025.129506","DOIUrl":"10.1016/j.jmaa.2025.129506","url":null,"abstract":"<div><div>We endow the Banach-Lie structure group <span><math><mi>S</mi><mi>t</mi><mi>r</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of an infinite dimensional JB-algebra <em>V</em> with a left-invariant connection and Finsler metric, and we compute all the quantities of its connection. We show how this connection reduces to <span><math><mi>G</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, the group of transformations that preserve the positive cone Ω of the algebra <em>V</em>, and to <span><math><mi>A</mi><mi>u</mi><mi>t</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, the group of Jordan automorphisms of the algebra. We present the cone Ω as a homogeneous space for the action of <span><math><mi>G</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, therefore inducing a quotient Finsler metric and distance. With the techniques introduced, we prove the minimality of the one-parameter groups in Ω for any symmetric gauge norm in <em>V</em>. We establish that the two presentations of the Finsler metric in Ω give the same distance there, which helps us prove the minimality of certain paths in <span><math><mi>G</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> for its left-invariant Finsler metric.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129506"},"PeriodicalIF":1.2,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Szegö's inequality revisited","authors":"Rui A.C. Ferreira","doi":"10.1016/j.jmaa.2025.129505","DOIUrl":"10.1016/j.jmaa.2025.129505","url":null,"abstract":"<div><div>By using an equality due to Feldheim between Hermite and Laguerre polynomials we give a very short proof of Szegö's inequality. In the process we obtained a better bound for the Laguerre polynomials.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129505"},"PeriodicalIF":1.2,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the sharp propagation connectivity threshold in hypergraphs","authors":"Guangyan Zhou , Bin Wang","doi":"10.1016/j.jmaa.2025.129509","DOIUrl":"10.1016/j.jmaa.2025.129509","url":null,"abstract":"<div><div>This paper studies the propagation connectivity, a generalized connectivity property of a generalized Erdős-Rényi model, denoted as <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>, which comprises both 2-edges and 3-edges. We find that there exist sharp phase transitions from a region where with high probability <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is propagation connected to a region where with high probability <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is not propagation connected. Moreover, the critical values at which the phase transitions occur are located exactly.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129509"},"PeriodicalIF":1.2,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143760677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlocal sublinear elliptic problems involving measures","authors":"Aye Chan May, Adisak Seesanea","doi":"10.1016/j.jmaa.2025.129513","DOIUrl":"10.1016/j.jmaa.2025.129513","url":null,"abstract":"<div><div>We study Dirichlet problems for fractional Laplace equations of the form <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>n</mi></math></span> where the nonlinearity <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>M</mi></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>+</mo><mi>ω</mi></math></span> involves sublinear terms with <span><math><mn>0</mn><mo><</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>1</mn></math></span> and the coefficients <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>ω</mi></math></span> are nonnegative locally finite Borel measures on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We develop a potential theoretic approach for the existence of positive minimal solutions in Lorentz spaces to the problems under certain assumptions on <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <em>ω</em>. The uniqueness properties of such solutions are discussed. Our techniques are also applicable to similar sublinear problems on uniform bounded domains when <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>2</mn></math></span>, or on arbitrary domains with positive Green's functions in the classical case <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129513"},"PeriodicalIF":1.2,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143739645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Random periodic solutions of non-uniform dissipative stochastic differential equations driven by multiplicative pure jump Lévy noises","authors":"Shan Huang , Xiaoyue Li , Li Yang","doi":"10.1016/j.jmaa.2025.129500","DOIUrl":"10.1016/j.jmaa.2025.129500","url":null,"abstract":"<div><div>This paper aims to investigate random periodic solutions in distribution of non-autonomous stochastic differential equations (SDEs) driven by multiplicative pure jump Lévy noises. Inspired by the refined basic coupling method for autonomous systems, we establish exponential contractivity of solutions of non-autonomous SDEs, where the coefficients are non-uniformly dissipative, and the requirements of Lévy measure corresponding to the Lévy process are not harsh (only with a truncated <em>α</em>-stable component). Based on this, we obtain the existence and uniqueness of the random periodic solutions in distribution by the criterion of the existence and uniqueness of the periodic Markov process. Meanwhile, two examples are provided to illustrate our results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129500"},"PeriodicalIF":1.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formulas involving moment and interpolation functions for Apostol type polynomials via Nörlund sum and Laplace transform","authors":"Elif Sükrüoglu, Yilmaz Simsek","doi":"10.1016/j.jmaa.2025.129504","DOIUrl":"10.1016/j.jmaa.2025.129504","url":null,"abstract":"<div><div>The goal of this paper is to define a new approach when constructing generating functions for the generalization and unification of the Apostol type Bernoulli polynomials. We apply the Nörlund sum, the Euler operator for derivative, ad the (inverse) Laplace transform to reach this aim. We also aim to prove a functional equation involving the Nörlund sum and the (inverse) Laplace transform. Moreover, by combining these operators with functional equations of the generating functions, we derive some new formulas for the Apostol type polynomials and <em>k</em>th moment of the geometric distribution. Finally, applying these operators, we not only find new the Riemann integral formulas, but also construct interpolation functions related to the Lerch zeta and the Hurwitz zeta functions for these polynomials.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129504"},"PeriodicalIF":1.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the planar weakly coupled nonlinear logarithmic Choquard systems","authors":"J.C. de Albuquerque , J. Carvalho , E. Medeiros","doi":"10.1016/j.jmaa.2025.129501","DOIUrl":"10.1016/j.jmaa.2025.129501","url":null,"abstract":"<div><div>In this paper, we study the following class of coupled nonlinear logarithmic Choquard equations<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi></mtd><mtd><mo>=</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mo>⋅</mo><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mo>⋅</mo><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>u</mi><mo>,</mo></mtd><mtd><mspace></mspace><mtext>in </mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi></mtd><mtd><mo>=</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mo>⋅</mo><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>v</mi><mo>+</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mo>⋅</mo><mo>|</mo></mrow></mfrac><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>v</mi><mo>,</mo></mtd><mtd><mspace></mspace><mtext>in </mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> We prove the existence of a nonnegative vector solution when <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Moreover, we prove that if <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then the system admits only the semi-trivial solution. Our approach is based on minimization over Nehari manifold and a version of the Principle of Symmetric Criticality due to Palais.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129501"},"PeriodicalIF":1.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transport multi-paths with capacity constraints","authors":"Qinglan Xia , Haotian Sun","doi":"10.1016/j.jmaa.2025.129499","DOIUrl":"10.1016/j.jmaa.2025.129499","url":null,"abstract":"<div><div>This article generalizes the study of branched/ramified optimal transportation to those with capacity constraints. Each admissible transport network studied here is represented by a transport multi-path between measures, with a capacity constraint on each of its components. The associated transport cost is given by the sum of the <span><math><msub><mrow><mtext>M</mtext></mrow><mrow><mi>α</mi></mrow></msub></math></span>-cost of each component. Using this new formulation, we prove the existence of an optimal solution and provide an upper bound on the number of components for the solution. Additionally, we conduct analytical examinations of the properties (e.g. “map-compatibility”, and “simple common-source property”) of each solution component and explore the interplay among components, particularly in the discrete case.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129499"},"PeriodicalIF":1.2,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On fractional p(⋅)-Schrödinger-Kirchhoff equations with the critical exponent in RN","authors":"Shuai Li , Tianqing An , Weichun Bu","doi":"10.1016/j.jmaa.2025.129502","DOIUrl":"10.1016/j.jmaa.2025.129502","url":null,"abstract":"<div><div>In the present paper, we discuss a class of critical Schrödinger-Kirchhoff type problem involving the fractional <span><math><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>-Laplacian. Firstly, for the critical case, we analyze the loss of compactness of the problem using the famous concentration-compactness principles. Next, the existence of nontrivial solutions is derived by utilizing the Nehari manifold approach. Finally, a simple example is given to show the validity of our main theorem's conditions. Our study improves and extends some recent work in the literature.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129502"},"PeriodicalIF":1.2,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bicomplex generalized hypergeometric functions and their applications","authors":"Snehasis Bera , Sourav Das , Abhijit Banerjee","doi":"10.1016/j.jmaa.2025.129490","DOIUrl":"10.1016/j.jmaa.2025.129490","url":null,"abstract":"<div><div>In this work, generalized hypergeometric functions for a bicomplex argument are introduced and the convergence criteria are derived. Furthermore, an integral representation of these functions is established. Moreover, quadratic transformation, a differential relation, analyticity, and contiguous relations of these functions are derived. Additionally, applications in quantum information systems and quantum optics are provided as a consequence.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129490"},"PeriodicalIF":1.2,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}