{"title":"The sample-path dynamics of a stochastic Holling-II type slow-fast predator-prey system","authors":"Ping Li , Yiliu Wang","doi":"10.1016/j.jmaa.2025.129791","DOIUrl":"10.1016/j.jmaa.2025.129791","url":null,"abstract":"<div><div>In this paper, we consider the effect of small (but not exponentially small) additive noise on the trajectories of a Holling-II type slow-fast predator-prey system, which admits a turning point, a fold point, and a unique limit cycle. We quantitatively describe the sample-path dynamics of the stochastic predator-prey system by estimating the probability that the perturbed stochastic paths stay in some tubular neighborhood of the deterministic orbits.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129791"},"PeriodicalIF":1.2,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144314636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gerardo M. Escolano , Antonio M. Peralta , Armando R. Villena
{"title":"Preservers of operator commutativity","authors":"Gerardo M. Escolano , Antonio M. Peralta , Armando R. Villena","doi":"10.1016/j.jmaa.2025.129796","DOIUrl":"10.1016/j.jmaa.2025.129796","url":null,"abstract":"<div><div>Let <span><math><mi>M</mi></math></span> and <span><math><mi>J</mi></math></span> be JBW<sup>⁎</sup>-algebras admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and let <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span> be a linear bijection preserving operator commutativity in both directions, that is,<span><span><span><math><mo>[</mo><mi>x</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>=</mo><mn>0</mn><mo>⇔</mo><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>J</mi><mo>,</mo><mi>Φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>]</mo><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>M</mi></math></span>, where the associator of three elements <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span> in <span><math><mi>M</mi></math></span> is defined by <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>(</mo><mi>a</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>c</mi><mo>−</mo><mo>(</mo><mi>c</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>a</mi></math></span>. We prove that under these conditions there exist a unique invertible central element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mi>J</mi></math></span>, a unique Jordan isomorphism <span><math><mi>J</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span>, and a unique linear mapping <em>β</em> from <span><math><mi>M</mi></math></span> to the centre of <span><math><mi>J</mi></math></span> satisfying<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∘</mo><mi>J</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>. Furthermore, if Φ is a symmetric mapping (i.e., <span><math><mi>Φ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>Φ</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>), the element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is self-adjoint, <em>J</em> is a Jordan <sup>⁎</sup>-isomorphism, and <em>β</em> is a <sup>⁎</sup>-symmetric mapping too.</div><div>In case that <span><math><mi>J</mi></math></span> is a JBW<sup>⁎</sup>-algebra admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, we also address the problem of describing the form of all symmetric bilinear mappings <span><m","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129796"},"PeriodicalIF":1.2,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Meixner–Pollaczek polynomials and the Sturm–Liouville problems","authors":"Mourad E.H. Ismail , Nasser Saad","doi":"10.1016/j.jmaa.2025.129794","DOIUrl":"10.1016/j.jmaa.2025.129794","url":null,"abstract":"<div><div>This work provides a detailed study of Meixner–Pollaczek polynomials and employs the central difference operator to study the Sturm–Liouville problem. It presents two linearly independent solutions to the recursion relation, along with the associated difference equations. Additionally, the establishment of second-kind functions is discussed.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129794"},"PeriodicalIF":1.2,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144291577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain: Mathematical foundations and practical applications","authors":"Aamir H. Dar, Neeraj Kumar Sharma","doi":"10.1016/j.jmaa.2025.129786","DOIUrl":"10.1016/j.jmaa.2025.129786","url":null,"abstract":"<div><div>In non-stationary signal processing, prior work has incorporated the quadratic-phase Fourier transform (QPFT) into the ambiguity function (AF) and Wigner distribution (WD) to enhance their performance. This paper introduces an advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain (AWDQ/AAFQ), extending classical WD/AF formulations. Key properties, including the Moyal formula, anti-derivative property, shift, conjugation symmetry, and marginal properties, are established. Furthermore, the proposed distributions demonstrate improved effectiveness in linear frequency-modulated (LFM) signal detection. Simulation results confirm that AWDQ/AAFQ outperforms both traditional WD/AF and existing QPFT-based WD/AF methods in detection accuracy and overall performance.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129786"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144298903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of Riemann solution for the relativistic Euler equations with Chaplygin gas under the perturbation of initial data","authors":"Yu Zhang , Xiaoyue Wei , Yanyan Zhang","doi":"10.1016/j.jmaa.2025.129790","DOIUrl":"10.1016/j.jmaa.2025.129790","url":null,"abstract":"<div><div>The structural stability of the Riemann solution for the relativistic Euler equations (REE) with Chaplygin gas is investigated. First, we perturb the Riemann initial data by introducing three piecewise constant states and rigorously establish the global structures of solutions to the perturbed Riemann problem. Then, by imposing the perturbed parameter <em>ε</em> tends to zero, we show that there is no mass concentration even if the initial perturbed density depends on <em>ε</em>. This result implies that the Riemann solutions for the REE with Chaplygin gas are stable under the local small perturbation of the initial data.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129790"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upper metric mean dimension with potential and BS dimension of a factor map","authors":"Zhongxuan Yang, Xiaojun Huang","doi":"10.1016/j.jmaa.2025.129788","DOIUrl":"10.1016/j.jmaa.2025.129788","url":null,"abstract":"<div><div>In this paper, we mainly focus on the upper metric mean dimension with potential and BS dimension of a factor map. We aim to build a link between the localize manifestations of upper metric mean dimension with potential (BS dimension) and the overarching upper metric mean with potential dimension (BS dimension).</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129788"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On point-line displacement with elliptic screw motion","authors":"Galip F. Uçak , İsmail Gök","doi":"10.1016/j.jmaa.2025.129787","DOIUrl":"10.1016/j.jmaa.2025.129787","url":null,"abstract":"<div><div>The objective of this paper is to develop the concept of point-line displacement within the framework of elliptic space, denoted as <span><math><msub><mrow><mi>R</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub></math></span>. The study begins by summarizing the fundamental principles of elliptic dual quaternions and elliptic screw motion. Next, the notion of point-line displacement is rigorously defined in the context of elliptic inner product spaces, and its algebraic properties are thoroughly analyzed. Finally, the practical relevance of the proposed approach is demonstrated through an illustrative example that establishes the relationship between point-line geometry and the elliptic dual Euler-Rodrigues formula.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129787"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metric entropy and the number of periodic orbits for endomorphisms","authors":"Pouya Mehdipour , Maryam Razi , Sanaz Lamei","doi":"10.1016/j.jmaa.2025.129783","DOIUrl":"10.1016/j.jmaa.2025.129783","url":null,"abstract":"<div><div>Using the inverse limit technique, we demonstrate that for an ergodic hyperbolic measure <em>μ</em> preserved by a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> endomorphism <em>f</em>, the exponential growth rate of the number of periodic measures that approximate <em>μ</em> and that their corresponding Lyapunov exponents approximate the Lyapunov exponents of <em>μ</em>, equals the metric entropy <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129783"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144271347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Duanmei Zhou , Jie Liao , Yudan Gan , Huilin Xu , Rong Zhang
{"title":"All solutions of the Yang-Baxter-like matrix equation AXA = XAX with A satisfying A4 = A","authors":"Duanmei Zhou , Jie Liao , Yudan Gan , Huilin Xu , Rong Zhang","doi":"10.1016/j.jmaa.2025.129785","DOIUrl":"10.1016/j.jmaa.2025.129785","url":null,"abstract":"<div><div>In this paper, we construct some explicit solutions to the Yang-Baxter-like matrix equation <span><math><mi>A</mi><mi>X</mi><mi>A</mi><mo>=</mo><mi>X</mi><mi>A</mi><mi>X</mi></math></span> for matrices <em>A</em> satisfying <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>=</mo><mi>A</mi></math></span>, thereby extending previous results in this field. By analyzing the minimal polynomial of <em>A</em>, we classify the problem into 11 distinct cases. Our approach leverages the Jordan decomposition of <em>A</em> to simplify the original equation, reducing it to a system of matrix equations involving block-diagonal matrices with smaller blocks. We then systematically solve these reduced equations to obtain the general solution. Finally, we present three numerical examples to demonstrate the applicability and effectiveness of our theoretical results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129785"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144308116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Roper-Suffridge type extension operators for univalent mappings revisited","authors":"Hidetaka Hamada , Gabriela Kohr , Mirela Kohr","doi":"10.1016/j.jmaa.2025.129763","DOIUrl":"10.1016/j.jmaa.2025.129763","url":null,"abstract":"<div><div>Let <em>f</em> be a normalized univalent function on the unit disc <em>U</em>, and let <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mi>R</mi></math></span>. We consider a family of operators <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> that extend <em>f</em> to biholomorphic mappings defined on the unit ball <em>B</em> of a complex Hilbert space <span><math><mi>H</mi></math></span> into <span><math><mi>H</mi></math></span>, and they are given by <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mi>w</mi><msup><mrow><mo>(</mo><mfrac><mrow><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></math></span>, where, for a fixed unit vector <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>H</mi></math></span>, we use the notation <span><math><mi>z</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>w</mi><mo>)</mo></math></span> if <span><math><mi>z</mi><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>w</mi></math></span> and <em>w</em> is orthogonal to <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. In the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> we obtain the Roper-Suffridge extension operator. Until now, it is only known that for the pairs <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> can be embedded as the initial element of a normal Loewner chain on <em>B</em> for any normalized univalent function <em>f</em> on <em>U</em>. In this paper, we describe a closed domain <em>D</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129763"},"PeriodicalIF":1.2,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}