{"title":"Semilinear equations in bounded cylinders: Morse index and bifurcation from one-dimensional solutions","authors":"Danilo Gregorin Afonso","doi":"10.1016/j.jmaa.2024.128918","DOIUrl":"10.1016/j.jmaa.2024.128918","url":null,"abstract":"<div><div>In this paper, we study semilinear elliptic equations in domains where there is a natural class of solutions, which depend only on one variable, and whose simple geometry reflects the geometry of the domain. We prove that under quite general assumptions, other types of solutions also exist. More precisely, we consider one-dimensional solutions in bounded cylinders and, combining a suitable separation of variables with the theory of ordinary differential equations, we show how to compute the Morse index of such solutions. The Morse index is then used to prove local and global bifurcation results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Firas Ghanim , Fareeha Sami Khan , Ali Hasan Ali , Abdon Atangana
{"title":"Generalized Mittag-Leffler-confluent hypergeometric functions in fractional calculus integral operator with numerical solutions","authors":"Firas Ghanim , Fareeha Sami Khan , Ali Hasan Ali , Abdon Atangana","doi":"10.1016/j.jmaa.2024.128917","DOIUrl":"10.1016/j.jmaa.2024.128917","url":null,"abstract":"<div><div>The Mittag-Leffler and confluent hypergeometric functions were originally developed to extend the exponential function and its area of applications. This study aims to examine some operators involving generalized Mittag-Leffler-type functions in the kernels, employing the generalized Fox-Wright function in specific circumstances. Furthermore, we investigate some of the commonly utilized generalized fractional integral operators in fractional calculus. Moreover, a numerical technique is developed to solve fractional differential equations of both kinds, linear and nonlinear. The graphic results of the examples show how effective this method is at solving fractional differential equations. Lastly, various effects and implications of these results are thoroughly examined.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dependence on initial data for a stochastic modified two-component Camassa-Holm system","authors":"Yongye Zhao , Zhenzhen Wang , Yun Wu","doi":"10.1016/j.jmaa.2024.128912","DOIUrl":"10.1016/j.jmaa.2024.128912","url":null,"abstract":"<div><div>We study a stochastic modified two-component Camassa-Holm equation on <span><math><mi>R</mi></math></span>. We establish a local well-posedness result in the sense of Hadamard, i.e. existence, uniqueness and continuous dependence on initial data, as well as blow-up criteria for pathwise solutions in the Sobolev spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mi>s</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>. Motivated by the work of Miao et al. (2024) <span><span>[29]</span></span>, we show that the solution map <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>↦</mo><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> defined by the corresponding Cauchy problem is weakly unstable, due to either a lack of strong stability in the exiting time or the absence of uniformly continuous dependence on the initial data.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Well-posedness of Kolmogorov-Fokker-Planck equations with unbounded drift","authors":"Francesca Anceschi , Giacomo Ascione , Daniele Castorina , Francesco Solombrino","doi":"10.1016/j.jmaa.2024.128909","DOIUrl":"10.1016/j.jmaa.2024.128909","url":null,"abstract":"<div><div>We consider Kolmogorov-Fokker-Planck equations with unbounded drift terms which are only measurable in time and locally Hölder continuous in space. In particular, we extend the parametrix method to this setting and we prove existence and uniqueness of measure solutions to the associated Cauchy problem, as well as the equivalence with the corresponding stochastic formulation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Congruences between the coefficients of certain mock theta functions","authors":"Hirakjyoti Das","doi":"10.1016/j.jmaa.2024.128913","DOIUrl":"10.1016/j.jmaa.2024.128913","url":null,"abstract":"<div><div>In this article, we prove several congruences modulo 3, 4, 5, 8, 9, 12, 24, 27, 81, 243, and 729 enjoyed by the coefficients of certain mock theta functions. As an example, for the second order mock theta functions<span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mfrac><mrow><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><msub><mrow><mo>(</mo><mi>q</mi><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msubsup><mrow><mo>(</mo><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfrac><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>P</mi></mrow><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><msub><mrow><mo>(</mo><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msubsup><mrow><mo>(</mo><mi>q</mi><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfrac><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><msub><mrow><mo>(</mo><mo>−</mo><mi>q</mi><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msub><mrow><mo>(</mo><mi>q</mi><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></mfrac><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>P</mi></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solutions for a problem involving a ϕ-Laplacian-like operator via energy analysis, phase plane and shooting method","authors":"Sigifredo Herrón , Emer Lopera , Diana Sánchez","doi":"10.1016/j.jmaa.2024.128910","DOIUrl":"10.1016/j.jmaa.2024.128910","url":null,"abstract":"<div><div>In this paper, we establish the existence of a countably infinite family of radially symmetric solutions that exhibit sign variations. These solutions are obtained for a Dirichlet boundary value problem incorporating a <em>ϕ</em>-Laplacian-like operator. Our main tools are the shooting method, phase plane and energy analysis, which demand extensive use of a Pozohaev-type identity.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local smooth solutions to the Euler-Poisson equations for semiconductor in vacuum","authors":"La-Su Mai, Chun Wang","doi":"10.1016/j.jmaa.2024.128915","DOIUrl":"10.1016/j.jmaa.2024.128915","url":null,"abstract":"<div><div>In this paper, we study the initial-boundary value problem to the Euler-Poisson equations for semiconductors, which involves the vacuum for the electronic density, a challenging case because of its degeneracy and singularity. The main issue is to investigate the local well-posedness of smooth solutions to the isentropic system with an adiabatic exponent <span><math><mi>γ</mi><mo>></mo><mn>1</mn></math></span>, a degenerate hyperbolic-elliptic system on the free boundary. By setting the system to the Lagrangian coordinates, we reduce it to the quasi-linear wave equation coupling the Poisson equations, where the initial degeneracy can be explicitly expressed by the function <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>γ</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> of the initial density <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, which equals to the distance function near boundaries. By applying the Hardy inequality and weighted Sobolev spaces depending on the distance function, we can overcome the degeneracy and singularity of the system caused by the vacuum, and we technically establish some crucial <em>priori</em> estimates and then prove the existence and uniqueness of the local smooth solution. This is the first result on the smooth solution to the Euler-Poisson equations for semiconductors in vacuum.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Value distribution of a pair of meromorphic functions","authors":"Qi Liu, Kai Liu","doi":"10.1016/j.jmaa.2024.128914","DOIUrl":"10.1016/j.jmaa.2024.128914","url":null,"abstract":"<div><div>The well-known Picard theorem shows only what happens on the Picard exceptional value of a meromorphic function <em>f</em>. In this paper, we mainly consider what happens on the common or different Picard exceptional values of two or three meromorphic functions with certain types. For instance, we will provide some new results and discussions for the generalized Picard exceptional values or small functions of a pair of meromorphic functions <span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>g</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>f</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span>, these two functions are the crossed variants of the complex differential polynomials in Hayman's conjecture, where <em>n</em>, <em>m</em> are positive integers and <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>. We give more details on the case that <span><math><mi>f</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><mi>g</mi><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> when <em>f</em> and <em>g</em> are exponential polynomials in particular.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Null controllability for a strongly coupled stochastic degenerate reaction-diffusion system","authors":"Lin Yan , Bin Wu","doi":"10.1016/j.jmaa.2024.128911","DOIUrl":"10.1016/j.jmaa.2024.128911","url":null,"abstract":"<div><div>This paper concerns the null controllability for a strongly coupled stochastic degenerate reaction-diffusion system in cardiac electrocardiology, which describes the electrical activity in the cardiac tissue with random effects. To deal with degeneracy of this system, we first consider an approximate problem of this coupled stochastic degenerate system. By a weighted identity method, we then prove a uniform Carleman estimate for the adjoint system of this approximate problem, which is a strongly coupled backward stochastic parabolic system with homogeneous Neumann boundary conditions. Based on this Carleman estimate and a limit process, we finally obtain the null controllability result.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Matoušek-like embedding obstructions of countably branching graphs","authors":"Ryan Malthaner","doi":"10.1016/j.jmaa.2024.128896","DOIUrl":"10.1016/j.jmaa.2024.128896","url":null,"abstract":"<div><div>In this paper we present new proofs of the non-embeddability of countably branching trees into Banach spaces satisfying property <span><math><mo>(</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and of countably branching diamonds into Banach spaces which are <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-asymptotic midpoint uniformly convex (<em>p</em>-AMUC) for <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>. These proofs are entirely metric in nature and are inspired by previous work of Jiří Matoušek. In addition, using this metric method, we succeed in extending these results to metric spaces satisfying certain embedding obstruction inequalities. Finally, we give Tessera-type lower bounds on the compression for a class of Lipschitz embeddings of the countably branching trees into Banach spaces containing <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-asymptotic models for <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}