Shi Xinjie , Wang Wenshuai , Long Pinhong , Huang Huaping , Jiang Zixian
{"title":"Fixed point theorems in extended cone b-metric-like spaces over Banach algebras","authors":"Shi Xinjie , Wang Wenshuai , Long Pinhong , Huang Huaping , Jiang Zixian","doi":"10.1016/j.jmaa.2025.129427","DOIUrl":"10.1016/j.jmaa.2025.129427","url":null,"abstract":"<div><div>In this study, the fixed point theorems for Reich type contraction and weak <em>ψ</em>-contraction in extended cone <em>b</em>-metric-like space over Banach algebra are established and some examples are provided to highlight the superiority of these results. Furthermore, the Kannan type contractive operator <span><math><mi>F</mi></math></span> is shown to be graphic contraction, quasi-contraction and the <em>c</em>-Picard operator, respectively. In the end, an application about the existence of solutions for the Urysohn I-type integral equation is demonstrated to support some consequences.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129427"},"PeriodicalIF":1.2,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of linear elliptic equations with general drifts and L1-zero-order terms","authors":"Haesung Lee","doi":"10.1016/j.jmaa.2025.129425","DOIUrl":"10.1016/j.jmaa.2025.129425","url":null,"abstract":"<div><div>This paper provides a detailed analysis of the Dirichlet boundary value problem for linear elliptic equations in divergence form with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-general drifts, where <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mi>d</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, and non-negative <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-zero-order terms. Specifically, by transforming the general drifts into weak divergence-free drifts, we establish the existence and uniqueness of a bounded weak solution, showing that the zero-order term does not influence the quantity of the unique weak solution. Additionally, by imposing the <em>VMO</em> condition and mild differentiability on the diffusion coefficients and assuming an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-zero-order terms with <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, we demonstrate the existence and uniqueness of a strong solution for the corresponding non-divergence type equations. An important feature of this paper is that, due to the weak divergence-free property of the drifts in the transformed equations, the constants appearing in our estimates can be explicitly calculated, which is expected to offer significant applications in error analysis.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129425"},"PeriodicalIF":1.2,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143577943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A generalization of Clairaut's formula and its applications","authors":"Vadym Koval","doi":"10.1016/j.jmaa.2025.129424","DOIUrl":"10.1016/j.jmaa.2025.129424","url":null,"abstract":"<div><div>The main purpose of this article is to study conditions for a curve on a submanifold <span><math><mi>M</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, constructed in a particular way involving the Euclidean distance to <em>M</em>, to be a geodesic. We also present the naturally arising generalization of Clairaut's formula needed for the generalization of the main result to higher dimensions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129424"},"PeriodicalIF":1.2,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global existence for a three-species predator-prey model with slow p-Laplacian diffusion","authors":"Songzhi Li, Changchun Liu, Yunru Zhao","doi":"10.1016/j.jmaa.2025.129426","DOIUrl":"10.1016/j.jmaa.2025.129426","url":null,"abstract":"<div><div>In this paper, we consider a three-species predator-prey model with slow <em>p</em>-Laplacian diffusion under homogeneous Neumann boundary conditions in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with smooth boundary. For some suitable assumptions on the initial data, we established the global bounded solutions for <span><math><mi>p</mi><mo>></mo><mfrac><mrow><mn>23</mn></mrow><mrow><mn>11</mn></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129426"},"PeriodicalIF":1.2,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Iterative algorithms and fixed point theorems for mean nonexpansive set-valued mappings in graphical convex metric spaces","authors":"Lili Chen, Yunyi Jiang, Yanfeng Zhao","doi":"10.1016/j.jmaa.2025.129428","DOIUrl":"10.1016/j.jmaa.2025.129428","url":null,"abstract":"<div><div>In this work, a series of fixed point results of the Ishikawa iterative algorithm and the SP iterative algorithm are presented in graphical convex metric spaces. First, we introduce the concepts of mean nonexpansive set-valued mappings in the above space. Furthermore, we study the existence and uniqueness of fixed points for mean nonexpansive set-valued mappings in graphical convex metric spaces. It is shown that the proposed two iterative sequences can both converge to a fixed point of the mean nonexpansive set-valued mapping. Meanwhile, we demonstrate the hypotheses of the existence theorem of fixed points for mean nonexpansive set-valued mappings by providing an example in <em>G</em>-complete graphical convex metric spaces are sufficient but not necessary.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 1","pages":"Article 129428"},"PeriodicalIF":1.2,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the evolution problem for the non-parametric prescribed mean curvature equation","authors":"Maria Michaela Porzio , Giuseppe Riey","doi":"10.1016/j.jmaa.2025.129420","DOIUrl":"10.1016/j.jmaa.2025.129420","url":null,"abstract":"<div><div>We study existence and regularity of the solutions to the prescribed mean curvature flow in non-parametric form.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129420"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-improving boundedness of the maximal operator on quasi-Banach lattices over spaces of homogeneous type","authors":"Alina Shalukhina","doi":"10.1016/j.jmaa.2025.129419","DOIUrl":"10.1016/j.jmaa.2025.129419","url":null,"abstract":"<div><div>We prove the self-improvement property of the Hardy–Littlewood maximal operator on quasi-Banach lattices with the Fatou property in the setting of spaces of homogeneous type. Our result is a generalization of the boundedness criterion obtained in 2010 by Lerner and Ombrosi for maximal operators on quasi-Banach function spaces over Euclidean spaces. The specialty of the proof for spaces of homogeneous type lies in using adjacent grids of Hytönen–Kairema dyadic cubes and studying the maximal operator alongside its “dyadic” version. Then we apply the obtained result to variable Lebesgue spaces over spaces of homogeneous type.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129419"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sublinear positone and semipositone problems on the exterior of a ball in R2","authors":"Anumol Joseph , Lakshmi Sankar","doi":"10.1016/j.jmaa.2025.129423","DOIUrl":"10.1016/j.jmaa.2025.129423","url":null,"abstract":"<div><div>We study positive solutions to problems of the form,<span><span><span>(0.1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi></mtd><mtd><mo>=</mo><mi>λ</mi><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext> in </mtext><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>c</mi></mrow></msubsup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext> on </mtext><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>c</mi></mrow></msubsup><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>></mo><mn>1</mn><mo>}</mo></math></span>, <em>λ</em> is a positive parameter, <span><math><mi>K</mi><mo>:</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>c</mi></mrow></msubsup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> belongs to a class of Hölder continuous functions which satisfy certain decay assumptions and <span><math><mi>f</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mi>R</mi></math></span> belongs to a class of Hölder continuous functions which are sublinear. For a class of positone problems of the form <span><span>(0.1)</span></span>, we establish the existence of multiple positive solutions for a range of the parameter <em>λ</em> and uniqueness of positive solutions for either sufficiently large or small values of <em>λ</em>. Additionally, we obtain an existence result for a semipositone problem of the form <span><span>(0.1)</span></span>. Our results extend the study of similar problems on exterior domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>></mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129423"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiong Lin , Jianfei Wang , Mingxin Chen , Qihua Ruan
{"title":"Rigidity of boundary Schwarz lemma between nonequidimensional unit balls","authors":"Xiong Lin , Jianfei Wang , Mingxin Chen , Qihua Ruan","doi":"10.1016/j.jmaa.2025.129416","DOIUrl":"10.1016/j.jmaa.2025.129416","url":null,"abstract":"<div><div>In this paper, we prove a new boundary Schwarz lemma for holomorphic mappings between nonequidimensional unit balls. As an application, a new rigidity theorem for holomorphic mappings between the unit ball <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is established, where <span><math><mi>N</mi><mo>≥</mo><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>. In particular, when <span><math><mi>N</mi><mo>=</mo><mi>n</mi></math></span>, our result reduces to that of Liu and Tang.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129416"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the moment problem and the linear difference equations with periodic coefficients","authors":"R. Ben Taher , M. Rachidi , A. Taia","doi":"10.1016/j.jmaa.2025.129415","DOIUrl":"10.1016/j.jmaa.2025.129415","url":null,"abstract":"<div><div>The aim of this paper is to study the problem of moments linked to real sequences that are solutions of a linear difference equation of order <em>r</em>, whose coefficients are variable and periodic of period <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>. We generate subsequences of such a sequence which satisfy a new linear recurrence equation with constant coefficients. Therefore, through the distributional formulation of these subsequences, new results related to the corresponding moment problem are established. Furthermore, some open questions on the connection between the moment problem for the original recursive sequence with periodic coefficients, and the moment problem for its related <em>p</em> recursive subsequences with constant coefficients, have been raised. To offer an initial perspective on our problem, the special cases <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> are exposed, and illustrative numerical examples are provided.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129415"},"PeriodicalIF":1.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}