Affine dual curve pair under the equi-transform of affine framed curve

IF 1.2 3区 数学 Q1 MATHEMATICS
Shuyue Zhang , Pengcheng Li , Donghe Pei
{"title":"Affine dual curve pair under the equi-transform of affine framed curve","authors":"Shuyue Zhang ,&nbsp;Pengcheng Li ,&nbsp;Donghe Pei","doi":"10.1016/j.jmaa.2025.130014","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we define the affine pedal and contrapedal curve (collectively referred to as affine dual curve pair) under the equi-transform in <span><math><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>R</mi><mo>)</mo></math></span>-system to solve the singularity problem. Then, we investigate the singular properties of affine dual curve pair under the equi-transform and give the classifications of singular points of affine dual curve pair. In addition, we bring the affine dual form to other affine curve pair like equi-affine evoulute-involute and study the new affine dual relationships.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130014"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007954","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we define the affine pedal and contrapedal curve (collectively referred to as affine dual curve pair) under the equi-transform in SL(2,R)-system to solve the singularity problem. Then, we investigate the singular properties of affine dual curve pair under the equi-transform and give the classifications of singular points of affine dual curve pair. In addition, we bring the affine dual form to other affine curve pair like equi-affine evoulute-involute and study the new affine dual relationships.
仿射框架曲线等变换下的仿射对偶曲线对
本文在SL(2,R)-系统中定义等变换下的仿射踏板曲线和反踏板曲线(统称为仿射对偶曲线对),以解决其奇异性问题。然后,研究了仿射对偶曲线对在等变换下的奇异性质,给出了仿射对偶曲线对奇异点的分类。此外,我们将仿射对偶形式引入到其他仿射曲线对如等仿射演化-渐开线上,研究了新的仿射对偶关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信