Multi-bubble blow-up analysis for an almost critical problem

IF 1.2 3区 数学 Q1 MATHEMATICS
Mohamed Ben Ayed, Khalil El Mehdi
{"title":"Multi-bubble blow-up analysis for an almost critical problem","authors":"Mohamed Ben Ayed,&nbsp;Khalil El Mehdi","doi":"10.1016/j.jmaa.2025.130003","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a smooth, bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> and a smooth positive function <em>V</em>. We analyze the asymptotic behavior of a sequence of positive solutions <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span> to the equation <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>−</mo><mi>ε</mi></mrow></msup></math></span> in Ω with zero Dirichlet boundary conditions, as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>. We determine the precise blow-up rate and characterize the locations of interior concentration points in the general case of multiple blow-up, providing an exhaustive description of interior blow-up phenomena of this equation. Our result is established through a delicate analysis of the gradient of the corresponding Euler-Lagrange functional.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130003"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500784X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a smooth, bounded domain ΩRn with n4 and a smooth positive function V. We analyze the asymptotic behavior of a sequence of positive solutions uε to the equation Δu+V(x)u=un+2n2ε in Ω with zero Dirichlet boundary conditions, as ε0. We determine the precise blow-up rate and characterize the locations of interior concentration points in the general case of multiple blow-up, providing an exhaustive description of interior blow-up phenomena of this equation. Our result is established through a delicate analysis of the gradient of the corresponding Euler-Lagrange functional.
一个近乎临界问题的多泡爆破分析
考虑一个光滑的有界域Ω∧Rn, n≥4和一个光滑的正函数V。我们在零狄利克雷边界条件下,分析方程- Δu+V(x)u=un+2n−2−ε在Ω中的一个正解序列ε的渐近行为,如ε→0。在多次爆破的一般情况下,我们确定了精确的爆破速率和内部集中点的位置,详尽地描述了该方程的内部爆破现象。我们的结果是通过对相应的欧拉-拉格朗日泛函的梯度进行细致的分析而得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信