Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
Generalised Hajłasz–Besov spaces on RD-spaces rd -空间上的广义Hajłasz-Besov空间
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-29 DOI: 10.1016/j.jmaa.2025.130028
Joaquim Martín , Walter A. Ortiz
{"title":"Generalised Hajłasz–Besov spaces on RD-spaces","authors":"Joaquim Martín ,&nbsp;Walter A. Ortiz","doi":"10.1016/j.jmaa.2025.130028","DOIUrl":"10.1016/j.jmaa.2025.130028","url":null,"abstract":"<div><div>An <em>RD</em> space is a doubling measure metric space Ω with the additional property that it has a reverse doubling property. In this paper we introduce a new class of Hajłasz–Besov spaces on Ω and extend several results from classical theory, such as embeddings and Sobolev-type embeddings.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130028"},"PeriodicalIF":1.2,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the well-posedness of the Second-grade compressible fluid model 二级可压缩流体模型的适定性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-29 DOI: 10.1016/j.jmaa.2025.130030
Basma Jaffal-Mourtada , Raafat Talhouk
{"title":"On the well-posedness of the Second-grade compressible fluid model","authors":"Basma Jaffal-Mourtada ,&nbsp;Raafat Talhouk","doi":"10.1016/j.jmaa.2025.130030","DOIUrl":"10.1016/j.jmaa.2025.130030","url":null,"abstract":"<div><div>In this paper, we investigate the well-posedness of Grade-two compressible fluid model in the non-steady case. To our knowledge, the existing literature provides only one result that addresses the existence of solutions for the compressible case, which is limited to steady-state flows.</div><div>We establish the local existence and uniqueness of solutions in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>. We notice that in the incompressible case, the best known existence result requires <span><math><mi>m</mi><mo>≥</mo><mn>5</mn></math></span>, unless specific thermodynamic conditions are satisfied (their effect is to reduce the high nonlinearity of the model), in which case <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span> suffices.</div><div>Finally, we analyze the linearized system around the constant state and establish the global well-posedness of the solution, as well as its exponential decay in time toward the steady state. In addition, we prove the persistence of regularity for the solution.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130030"},"PeriodicalIF":1.2,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145010002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuity of multi-parameter adjoint paraproduct operators 多参数伴随副积算子的连续性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-29 DOI: 10.1016/j.jmaa.2025.130025
Wei Ding , Yongjia Xue , Tianyu Zhang , Yueping Zhu
{"title":"Continuity of multi-parameter adjoint paraproduct operators","authors":"Wei Ding ,&nbsp;Yongjia Xue ,&nbsp;Tianyu Zhang ,&nbsp;Yueping Zhu","doi":"10.1016/j.jmaa.2025.130025","DOIUrl":"10.1016/j.jmaa.2025.130025","url":null,"abstract":"<div><div>We study the boundedness of inhomogeneous Journé's operators on multi-parameter local Hardy spaces. Recently, a class of local multi-parameter paraproducts was shown to obstruct particular T1-type theorems in this context. In this paper, we study the boundedness of the adjoints of these local multi-parameter paraproducts. The theory is more challenging due to the lack of vanishing moments.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130025"},"PeriodicalIF":1.2,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhomogeneous generalized fractional Bessel differential equations in complex domain 复域上的非齐次广义分数贝塞尔微分方程
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-29 DOI: 10.1016/j.jmaa.2025.130020
Babli Yadav, Trilok Mathur, Shivi Agarwal
{"title":"Inhomogeneous generalized fractional Bessel differential equations in complex domain","authors":"Babli Yadav,&nbsp;Trilok Mathur,&nbsp;Shivi Agarwal","doi":"10.1016/j.jmaa.2025.130020","DOIUrl":"10.1016/j.jmaa.2025.130020","url":null,"abstract":"<div><div>This paper explores inhomogeneous generalized fractional-order Bessel differential equations in the complex domain with arbitrary-order <em>δ</em> (<span><math><mi>δ</mi><mo>=</mo><mi>τ</mi><mo>+</mo><mi>ι</mi><mi>a</mi><mo>;</mo><mn>1</mn><mo>&lt;</mo><mi>τ</mi><mo>≤</mo><mn>2</mn><mo>,</mo><mi>a</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>) using Riemann-Liouville (R-L) fractional operators. The study establishes the existence of holomorphic solutions through the power series method, considering the concept of radius of convergence. Conditions for the unique existence of holomorphic solutions in the complex domain are identified using fixed point theory and the Rouche theorem. Additionally, the paper demonstrates that the solution, particularly for infinite series of fractional power, satisfies the generalized Ulam-Hyers stability. Furthermore, when <span><math><mi>δ</mi><mo>=</mo><mn>2</mn></math></span>, the solution to the inhomogeneous Bessel differential equation takes the form of Bessel functions of the first kind, denoted as <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130020"},"PeriodicalIF":1.2,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical computation of Stephenson's g-functions in multiply connected domains 多连通域上Stephenson g函数的数值计算
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-28 DOI: 10.1016/j.jmaa.2025.130010
Christopher C. Green, Mohamed M.S. Nasser
{"title":"Numerical computation of Stephenson's g-functions in multiply connected domains","authors":"Christopher C. Green,&nbsp;Mohamed M.S. Nasser","doi":"10.1016/j.jmaa.2025.130010","DOIUrl":"10.1016/j.jmaa.2025.130010","url":null,"abstract":"<div><div>There has been much recent attention on <em>h</em>-functions, so named since they describe the distribution of harmonic measure for a given multiply connected domain with respect to some basepoint. In this paper, we focus on a closely related function to the <em>h</em>-function, known as the <em>g</em>-function, which originally stemmed from questions posed by Stephenson in <span><span>[3]</span></span>. Computing the values of the <em>g</em>-function for a given planar domain and some basepoint in this domain requires solving a Dirichlet boundary value problem whose domain and boundary condition change depending on the input argument of the <em>g</em>-function. We use a well-established boundary integral equation method to solve the relevant Dirichlet boundary value problems and plot various graphs of the <em>g</em>-functions for different multiply connected circular and rectilinear slit domains.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130010"},"PeriodicalIF":1.2,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144988416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic behaviors of solutions for Timoshenko systems with memory damping 具有记忆阻尼的Timoshenko系统解的渐近行为
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-28 DOI: 10.1016/j.jmaa.2025.130017
Chan Li, Jia-Yi Li, Li-Jun Wu
{"title":"Asymptotic behaviors of solutions for Timoshenko systems with memory damping","authors":"Chan Li,&nbsp;Jia-Yi Li,&nbsp;Li-Jun Wu","doi":"10.1016/j.jmaa.2025.130017","DOIUrl":"10.1016/j.jmaa.2025.130017","url":null,"abstract":"<div><div>We investigate the asymptotic behaviors of solutions for Timoshenko systems with interior memory damping, subject to the feedback-type boundary conditions. The memory kernel function possesses a positive definite primitive, allowing it to vary in sign and oscillate. By employing multiplier methods and constructing auxiliary systems, we establish asymptotic stability and exponential stability of the system. The existing work studied systems corresponding to positive definite operators. The present paper extends the current theory to systems corresponding to non-positive definite operators.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130017"},"PeriodicalIF":1.2,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144988711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The (p,q)-Laplacian systems on locally finite graphs 局部有限图上的(p,q)-拉普拉斯系统
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-27 DOI: 10.1016/j.jmaa.2025.130018
Ziliang Yang , Jiabao Su , Mingzheng Sun , Rushun Tian
{"title":"The (p,q)-Laplacian systems on locally finite graphs","authors":"Ziliang Yang ,&nbsp;Jiabao Su ,&nbsp;Mingzheng Sun ,&nbsp;Rushun Tian","doi":"10.1016/j.jmaa.2025.130018","DOIUrl":"10.1016/j.jmaa.2025.130018","url":null,"abstract":"<div><div>In this paper, we study the nonlinear <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-Laplacian systems on the locally finite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>. We use the mountain pass theorem and the Nehari manifold method to obtain the existence and the concentration behavior of the ground state solutions of the systems under suitable hypotheses on the potential functions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130018"},"PeriodicalIF":1.2,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stability of Koliha-Drazin invertible operators under commuting polynomially Riesz perturbations 可交换多项式Riesz摄动下Koliha-Drazin可逆算子的稳定性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-27 DOI: 10.1016/j.jmaa.2025.130015
Miloš D. Cvetković
{"title":"On the stability of Koliha-Drazin invertible operators under commuting polynomially Riesz perturbations","authors":"Miloš D. Cvetković","doi":"10.1016/j.jmaa.2025.130015","DOIUrl":"10.1016/j.jmaa.2025.130015","url":null,"abstract":"<div><div>Let <em>X</em> be an infinite-dimensional complex Banach space and let <em>p</em> be a non-zero complex polynomial. Suppose that <em>T</em> and <em>S</em> are bounded linear operators on <em>X</em> such that <em>T</em> is Koliha-Drazin invertible with finite nullity, <span><math><mi>p</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> is Riesz and <span><math><mi>T</mi><mi>S</mi><mo>=</mo><mi>S</mi><mi>T</mi></math></span>. We prove that if <em>p</em> is an odd function and if <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>∩</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>⊂</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> denotes the Browder spectrum of <em>T</em>, then <span><math><mi>T</mi><mo>+</mo><mi>S</mi></math></span> is Koliha-Drazin invertible.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130015"},"PeriodicalIF":1.2,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary representations from constrained interpolation 约束插值的边界表示
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-27 DOI: 10.1016/j.jmaa.2025.130012
Gal Ben Ayun, Eli Shamovich
{"title":"Boundary representations from constrained interpolation","authors":"Gal Ben Ayun,&nbsp;Eli Shamovich","doi":"10.1016/j.jmaa.2025.130012","DOIUrl":"10.1016/j.jmaa.2025.130012","url":null,"abstract":"<div><div>In this paper, we study <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-envelopes of finite-dimensional operator algebras arising from constrained interpolation problems on the unit disc. In particular, we consider interpolation problems for the algebra <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>node</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> that consists of bounded analytic functions on the unit disk that satisfy <span><math><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> for some <span><math><mn>0</mn><mo>≠</mo><mi>λ</mi><mo>∈</mo><mi>D</mi></math></span>. We show that there exist choices of four interpolation nodes that exclude both 0 and <em>λ</em>, such that if <em>I</em> is the ideal of functions that vanish at the interpolation nodes, then <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>node</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>/</mo><mi>I</mi><mo>)</mo></math></span> is infinite-dimensional. This differs markedly from the behavior of the algebra corresponding to interpolation nodes that contain the constrained points studied in the literature. Additionally, we use the distance formula to provide a completely isometric embedding of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>node</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>/</mo><mi>I</mi><mo>)</mo></math></span> for any choice of <em>n</em> interpolation nodes that do not contain the constrained points into <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>, where <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is Brown's noncommutative Grassmannian.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130012"},"PeriodicalIF":1.2,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144932943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the scramble sets in infinite iterated function systems 无限迭代函数系统的乱集
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-08-27 DOI: 10.1016/j.jmaa.2025.130016
Weibin Liu , Jihua Ma , Kunkun Song , Lin Xu
{"title":"On the scramble sets in infinite iterated function systems","authors":"Weibin Liu ,&nbsp;Jihua Ma ,&nbsp;Kunkun Song ,&nbsp;Lin Xu","doi":"10.1016/j.jmaa.2025.130016","DOIUrl":"10.1016/j.jmaa.2025.130016","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> be an infinite iterated function system, i.e., a countable family of contractions on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> satisfying some regular properties. Let <span><math><mi>T</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> be the associated expanding map, which is defined by <span><math><mi>T</mi><mo>=</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> on the subinterval <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span> for each <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>. It is shown that each Li-Yorke scrambled set of <em>T</em> has Lebesgue measure zero, while there exists a scrambled set of <em>T</em> with Hausdorff dimension one.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 130016"},"PeriodicalIF":1.2,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信