{"title":"Lloc1-convergence of Jacobians of Sobolev homeomorphisms via area formula","authors":"Zofia Grochulska","doi":"10.1016/j.jmaa.2025.129741","DOIUrl":"10.1016/j.jmaa.2025.129741","url":null,"abstract":"<div><div>We prove that given a sequence of homeomorphisms <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> convergent in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>p</mi><mo>></mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, to a homeomorphism <em>f</em> which maps sets of measure zero onto sets of measure zero, Jacobians <span><math><mi>J</mi><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> converge to <em>Jf</em> in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. We prove it via Federer's area formula and investigation of when <span><math><mo>|</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>|</mo><mo>→</mo><mo>|</mo><mi>f</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>|</mo></math></span> as <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span> for Borel subsets <span><math><mi>E</mi><mo>⋐</mo><mi>Ω</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129741"},"PeriodicalIF":1.2,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the stability of the viscoelastic Bénard problem in some classes of large data","authors":"Qunfeng Zhang, Hao Liu, Xianzhu Xiong","doi":"10.1016/j.jmaa.2025.129732","DOIUrl":"10.1016/j.jmaa.2025.129732","url":null,"abstract":"<div><div>In this paper, we investigate the Bénard problem of the incompressible viscoelastic fluids heated from below in a three-dimensional periodic cell, and establish the global (-in-time) existence result of unique strong solutions whenever the elasticity coefficient is sufficiently large relative to both norms (of energy space of solutions) of the initial velocity and the initial perturbation temperature. Our new result mathematically verifies that the elasticity under the large elasticity coefficient can inhibit the thermal instability even if both the initial velocity and the initial perturbation temperature are large. Moreover, the solutions also enjoy the exponential decay-in-time. In addition, using the method of vorticity estimates, we further derive that the convergence rate of the nonlinear system towards a linearized pressureless problem, as either time or elasticity coefficient approaches infinity, is in the form of <span><math><mi>c</mi><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Our converge rate is faster compared to the known rate <span><math><mi>c</mi><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> first found by Jiang–Jiang in <span><span>[23]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129732"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lp-Hodge decomposition with Sobolev classes in sub-Riemannian contact manifolds","authors":"Annalisa Baldi , Alessandro Rosa","doi":"10.1016/j.jmaa.2025.129739","DOIUrl":"10.1016/j.jmaa.2025.129739","url":null,"abstract":"<div><div>Let <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>. In this article we establish an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-Hodge decomposition theorem on sub-Riemannian compact contact manifolds without boundary, related to the Rumin complex of differential forms. Given an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>- Rumin's form, we adopt an approach in the spirit of Morrey's book <span><span>[26]</span></span> (further performed in <span><span>[18]</span></span>) to obtain a decomposition with higher regular “primitives” i.e. that belong to suitable Sobolev classes. Our proof relies on recent results obtained in <span><span>[4]</span></span> and <span><span>[6]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129739"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144189460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On some logarithmic submajorisation inequalities of operators in finite von Neumann algebras","authors":"Ruifeng Sun, Jing Yang, Xingpeng Zhao","doi":"10.1016/j.jmaa.2025.129735","DOIUrl":"10.1016/j.jmaa.2025.129735","url":null,"abstract":"<div><div>In this paper, we prove some logarithmic submajorisation inequalities of operators in finite von Neumann algebras. In particular, the logarithmic submajorisation inequalities due to Boutata-Hirzallah-Kittaneh <span><span>[4]</span></span> are extended to the case of operators in a finite von Neumann algebra.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129735"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144213198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An evolutionary vector-valued variational inequality and Lagrange multiplier","authors":"Davide Azevedo, Lisa Santos","doi":"10.1016/j.jmaa.2025.129746","DOIUrl":"10.1016/j.jmaa.2025.129746","url":null,"abstract":"<div><div>We prove existence and uniqueness of solution of an evolutionary vector-valued variational inequality defined in the convex set of vector valued functions <strong><em>v</em></strong> subject to the constraint <span><math><mo>|</mo><mi>v</mi><mo>|</mo><mo>≤</mo><mn>1</mn></math></span>. We show that we can write the variational inequality as a system of equations on the unknowns <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, where <em>λ</em> is a (unique) Lagrange multiplier belonging to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <strong><em>u</em></strong> solves the variational inequality. Given data <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mn>0</mn></mrow></msub><mo>)</mo></math></span> converging to <span><math><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo><mo>×</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, we prove the convergence of the solutions <span><math><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of the Lagrange multiplier problem to the solution of the limit problem, when we let <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129746"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144222398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nodal solutions for fractional Kirchhoff problems involving critical exponential growth","authors":"R. Clemente , D. Pereira , P. Ubilla","doi":"10.1016/j.jmaa.2025.129736","DOIUrl":"10.1016/j.jmaa.2025.129736","url":null,"abstract":"<div><div>In this paper we discuss the existence of least energy nodal solutions for a class of fractional Kirchhoff problems <span><math><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><msubsup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi></math></span> + <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi></math></span> = <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><mi>R</mi></math></span>, where <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is a nonlinear term with critical exponential growth. By using the deformation lemma, we obtain a least energy nodal solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> for this class of problems. Furthermore, the study of the asymptotic behavior of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> as <span><math><mi>b</mi><mo>→</mo><mn>0</mn></math></span> allows us to prove the existence of nodal solutions for the equation in the absence of the Kirchhoff term. To the best of our knowledge, this is the first result proving the existence of nodal solutions for this type of equations.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129736"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Cauchy wavelet transform for ultradistributions","authors":"Richard D. Carmichael","doi":"10.1016/j.jmaa.2025.129737","DOIUrl":"10.1016/j.jmaa.2025.129737","url":null,"abstract":"<div><div>The Cauchy wavelet is defined in 1-dimension, and the corresponding Cauchy wavelet transform (<em>CWT</em>) is constructed for functions. This wavelet and its corresponding kernel function for the transform are extended to n-dimension first as a product whose components concern the n components of the variable in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The structure of the <em>CWT</em> and its kernel function in this n-dimensional setting is then noted with the kernel function containing derivatives of the classical Cauchy kernel associated with tubes of the form <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> is any of the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> n-rants in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. With this view of the form of the CWT we then extend the kernel function to have the form of derivatives of the Cauchy kernel defined with respect to complex variables in tubes <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><mi>C</mi><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <em>C</em> is a cone in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We then apply a defined ultradistribution to this extended kernel function to obtain the <em>CWT</em> that we study. Properties of this <em>CWT</em> for ultradistributions which we obtain concern the analyticity of the transform, pointwise growth, norm growth, and boundary limit properties of the transform.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129737"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144222406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological structure of the set of solution for singular elliptic equations with a convective term","authors":"J.V. Goncalves , M.R. Marcial , O.H. Miyagaki , C.A.P. dos Santos","doi":"10.1016/j.jmaa.2025.129738","DOIUrl":"10.1016/j.jmaa.2025.129738","url":null,"abstract":"<div><div>In this paper we establish existence and nonexistence of solution to the quasilinear singular elliptic equation <span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>λ</mi><mi>β</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>f</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi></math></span>, under Dirichlet boundary conditions, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a bounded domain with smooth boundary ∂Ω, <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> is a real parameter, <span><math><mi>β</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> function, possibly singular at zero, in the sense that <span><math><mi>β</mi><mo>(</mo><mi>s</mi><mo>)</mo><mover><mrow><mo>→</mo></mrow><mrow><mi>s</mi><mo>→</mo><mn>0</mn></mrow></mover><mo>∞</mo></math></span>, and <span><math><mi>f</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is continuous. No monotonicity condition whatsoever is imposed upon <em>β</em>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129738"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a class of generalized Berezin type operators on the unit ball of Cn","authors":"Jin Lu , Ruhan Zhao , Lifang Zhou","doi":"10.1016/j.jmaa.2025.129745","DOIUrl":"10.1016/j.jmaa.2025.129745","url":null,"abstract":"<div><div>We characterize boundedness of a class of generalized Berezin type operators <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>r</mi></mrow></msubsup></math></span> from a weighted Bergman space to a weighted Lebesgue space on the unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. These types of operators are crucial in characterizing Carleson measures through products of functions. By an improved method using Khinchine's inequality and Khinchine-Kahane-Kalton inequality, our result not only extends a previous result on these operators to a large scale, but also removes an extra restrictive condition to that result. When <span><math><mo>(</mo><mi>s</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>β</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, our result also recovers a recent result on boundedness of Berezin type operators. As an application, we provide an alternate proof of a necessary condition for the parameter <em>c</em> in the <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> boundedness of the Forelli-Rudin type operator <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129745"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144222402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global well-posedness and decay estimates for the 2D chemotaxis model with the supercritical case","authors":"Peiyi Liu , Qian Zhang","doi":"10.1016/j.jmaa.2025.129731","DOIUrl":"10.1016/j.jmaa.2025.129731","url":null,"abstract":"<div><div>In this paper, we investigate the Cauchy problem for the 2D chemotaxis model. By considering an external force term of the form <span><math><mo>−</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>q</mi><mo><</mo><mn>2</mn></math></span>, we establish the existence of a global classical solution and provide decay estimates for the supercritical case.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129731"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144189459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}