{"title":"Generalised Hajłasz–Besov spaces on RD-spaces","authors":"Joaquim Martín , Walter A. Ortiz","doi":"10.1016/j.jmaa.2025.130028","DOIUrl":"10.1016/j.jmaa.2025.130028","url":null,"abstract":"<div><div>An <em>RD</em> space is a doubling measure metric space Ω with the additional property that it has a reverse doubling property. In this paper we introduce a new class of Hajłasz–Besov spaces on Ω and extend several results from classical theory, such as embeddings and Sobolev-type embeddings.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130028"},"PeriodicalIF":1.2,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the well-posedness of the Second-grade compressible fluid model","authors":"Basma Jaffal-Mourtada , Raafat Talhouk","doi":"10.1016/j.jmaa.2025.130030","DOIUrl":"10.1016/j.jmaa.2025.130030","url":null,"abstract":"<div><div>In this paper, we investigate the well-posedness of Grade-two compressible fluid model in the non-steady case. To our knowledge, the existing literature provides only one result that addresses the existence of solutions for the compressible case, which is limited to steady-state flows.</div><div>We establish the local existence and uniqueness of solutions in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>. We notice that in the incompressible case, the best known existence result requires <span><math><mi>m</mi><mo>≥</mo><mn>5</mn></math></span>, unless specific thermodynamic conditions are satisfied (their effect is to reduce the high nonlinearity of the model), in which case <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span> suffices.</div><div>Finally, we analyze the linearized system around the constant state and establish the global well-posedness of the solution, as well as its exponential decay in time toward the steady state. In addition, we prove the persistence of regularity for the solution.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130030"},"PeriodicalIF":1.2,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145010002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuity of multi-parameter adjoint paraproduct operators","authors":"Wei Ding , Yongjia Xue , Tianyu Zhang , Yueping Zhu","doi":"10.1016/j.jmaa.2025.130025","DOIUrl":"10.1016/j.jmaa.2025.130025","url":null,"abstract":"<div><div>We study the boundedness of inhomogeneous Journé's operators on multi-parameter local Hardy spaces. Recently, a class of local multi-parameter paraproducts was shown to obstruct particular T1-type theorems in this context. In this paper, we study the boundedness of the adjoints of these local multi-parameter paraproducts. The theory is more challenging due to the lack of vanishing moments.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130025"},"PeriodicalIF":1.2,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhomogeneous generalized fractional Bessel differential equations in complex domain","authors":"Babli Yadav, Trilok Mathur, Shivi Agarwal","doi":"10.1016/j.jmaa.2025.130020","DOIUrl":"10.1016/j.jmaa.2025.130020","url":null,"abstract":"<div><div>This paper explores inhomogeneous generalized fractional-order Bessel differential equations in the complex domain with arbitrary-order <em>δ</em> (<span><math><mi>δ</mi><mo>=</mo><mi>τ</mi><mo>+</mo><mi>ι</mi><mi>a</mi><mo>;</mo><mn>1</mn><mo><</mo><mi>τ</mi><mo>≤</mo><mn>2</mn><mo>,</mo><mi>a</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>) using Riemann-Liouville (R-L) fractional operators. The study establishes the existence of holomorphic solutions through the power series method, considering the concept of radius of convergence. Conditions for the unique existence of holomorphic solutions in the complex domain are identified using fixed point theory and the Rouche theorem. Additionally, the paper demonstrates that the solution, particularly for infinite series of fractional power, satisfies the generalized Ulam-Hyers stability. Furthermore, when <span><math><mi>δ</mi><mo>=</mo><mn>2</mn></math></span>, the solution to the inhomogeneous Bessel differential equation takes the form of Bessel functions of the first kind, denoted as <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130020"},"PeriodicalIF":1.2,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical computation of Stephenson's g-functions in multiply connected domains","authors":"Christopher C. Green, Mohamed M.S. Nasser","doi":"10.1016/j.jmaa.2025.130010","DOIUrl":"10.1016/j.jmaa.2025.130010","url":null,"abstract":"<div><div>There has been much recent attention on <em>h</em>-functions, so named since they describe the distribution of harmonic measure for a given multiply connected domain with respect to some basepoint. In this paper, we focus on a closely related function to the <em>h</em>-function, known as the <em>g</em>-function, which originally stemmed from questions posed by Stephenson in <span><span>[3]</span></span>. Computing the values of the <em>g</em>-function for a given planar domain and some basepoint in this domain requires solving a Dirichlet boundary value problem whose domain and boundary condition change depending on the input argument of the <em>g</em>-function. We use a well-established boundary integral equation method to solve the relevant Dirichlet boundary value problems and plot various graphs of the <em>g</em>-functions for different multiply connected circular and rectilinear slit domains.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130010"},"PeriodicalIF":1.2,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144988416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic behaviors of solutions for Timoshenko systems with memory damping","authors":"Chan Li, Jia-Yi Li, Li-Jun Wu","doi":"10.1016/j.jmaa.2025.130017","DOIUrl":"10.1016/j.jmaa.2025.130017","url":null,"abstract":"<div><div>We investigate the asymptotic behaviors of solutions for Timoshenko systems with interior memory damping, subject to the feedback-type boundary conditions. The memory kernel function possesses a positive definite primitive, allowing it to vary in sign and oscillate. By employing multiplier methods and constructing auxiliary systems, we establish asymptotic stability and exponential stability of the system. The existing work studied systems corresponding to positive definite operators. The present paper extends the current theory to systems corresponding to non-positive definite operators.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130017"},"PeriodicalIF":1.2,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144988711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziliang Yang , Jiabao Su , Mingzheng Sun , Rushun Tian
{"title":"The (p,q)-Laplacian systems on locally finite graphs","authors":"Ziliang Yang , Jiabao Su , Mingzheng Sun , Rushun Tian","doi":"10.1016/j.jmaa.2025.130018","DOIUrl":"10.1016/j.jmaa.2025.130018","url":null,"abstract":"<div><div>In this paper, we study the nonlinear <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-Laplacian systems on the locally finite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>. We use the mountain pass theorem and the Nehari manifold method to obtain the existence and the concentration behavior of the ground state solutions of the systems under suitable hypotheses on the potential functions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130018"},"PeriodicalIF":1.2,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the stability of Koliha-Drazin invertible operators under commuting polynomially Riesz perturbations","authors":"Miloš D. Cvetković","doi":"10.1016/j.jmaa.2025.130015","DOIUrl":"10.1016/j.jmaa.2025.130015","url":null,"abstract":"<div><div>Let <em>X</em> be an infinite-dimensional complex Banach space and let <em>p</em> be a non-zero complex polynomial. Suppose that <em>T</em> and <em>S</em> are bounded linear operators on <em>X</em> such that <em>T</em> is Koliha-Drazin invertible with finite nullity, <span><math><mi>p</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> is Riesz and <span><math><mi>T</mi><mi>S</mi><mo>=</mo><mi>S</mi><mi>T</mi></math></span>. We prove that if <em>p</em> is an odd function and if <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>∩</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>⊂</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> denotes the Browder spectrum of <em>T</em>, then <span><math><mi>T</mi><mo>+</mo><mi>S</mi></math></span> is Koliha-Drazin invertible.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130015"},"PeriodicalIF":1.2,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundary representations from constrained interpolation","authors":"Gal Ben Ayun, Eli Shamovich","doi":"10.1016/j.jmaa.2025.130012","DOIUrl":"10.1016/j.jmaa.2025.130012","url":null,"abstract":"<div><div>In this paper, we study <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-envelopes of finite-dimensional operator algebras arising from constrained interpolation problems on the unit disc. In particular, we consider interpolation problems for the algebra <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>node</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> that consists of bounded analytic functions on the unit disk that satisfy <span><math><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> for some <span><math><mn>0</mn><mo>≠</mo><mi>λ</mi><mo>∈</mo><mi>D</mi></math></span>. We show that there exist choices of four interpolation nodes that exclude both 0 and <em>λ</em>, such that if <em>I</em> is the ideal of functions that vanish at the interpolation nodes, then <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>node</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>/</mo><mi>I</mi><mo>)</mo></math></span> is infinite-dimensional. This differs markedly from the behavior of the algebra corresponding to interpolation nodes that contain the constrained points studied in the literature. Additionally, we use the distance formula to provide a completely isometric embedding of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>e</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>node</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>/</mo><mi>I</mi><mo>)</mo></math></span> for any choice of <em>n</em> interpolation nodes that do not contain the constrained points into <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>, where <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is Brown's noncommutative Grassmannian.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130012"},"PeriodicalIF":1.2,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144932943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the scramble sets in infinite iterated function systems","authors":"Weibin Liu , Jihua Ma , Kunkun Song , Lin Xu","doi":"10.1016/j.jmaa.2025.130016","DOIUrl":"10.1016/j.jmaa.2025.130016","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> be an infinite iterated function system, i.e., a countable family of contractions on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> satisfying some regular properties. Let <span><math><mi>T</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> be the associated expanding map, which is defined by <span><math><mi>T</mi><mo>=</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> on the subinterval <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span> for each <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>. It is shown that each Li-Yorke scrambled set of <em>T</em> has Lebesgue measure zero, while there exists a scrambled set of <em>T</em> with Hausdorff dimension one.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 130016"},"PeriodicalIF":1.2,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}