{"title":"超分布的柯西小波变换","authors":"Richard D. Carmichael","doi":"10.1016/j.jmaa.2025.129737","DOIUrl":null,"url":null,"abstract":"<div><div>The Cauchy wavelet is defined in 1-dimension, and the corresponding Cauchy wavelet transform (<em>CWT</em>) is constructed for functions. This wavelet and its corresponding kernel function for the transform are extended to n-dimension first as a product whose components concern the n components of the variable in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The structure of the <em>CWT</em> and its kernel function in this n-dimensional setting is then noted with the kernel function containing derivatives of the classical Cauchy kernel associated with tubes of the form <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> is any of the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> n-rants in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. With this view of the form of the CWT we then extend the kernel function to have the form of derivatives of the Cauchy kernel defined with respect to complex variables in tubes <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><mi>C</mi><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <em>C</em> is a cone in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We then apply a defined ultradistribution to this extended kernel function to obtain the <em>CWT</em> that we study. Properties of this <em>CWT</em> for ultradistributions which we obtain concern the analyticity of the transform, pointwise growth, norm growth, and boundary limit properties of the transform.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129737"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cauchy wavelet transform for ultradistributions\",\"authors\":\"Richard D. Carmichael\",\"doi\":\"10.1016/j.jmaa.2025.129737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Cauchy wavelet is defined in 1-dimension, and the corresponding Cauchy wavelet transform (<em>CWT</em>) is constructed for functions. This wavelet and its corresponding kernel function for the transform are extended to n-dimension first as a product whose components concern the n components of the variable in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The structure of the <em>CWT</em> and its kernel function in this n-dimensional setting is then noted with the kernel function containing derivatives of the classical Cauchy kernel associated with tubes of the form <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> is any of the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> n-rants in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. With this view of the form of the CWT we then extend the kernel function to have the form of derivatives of the Cauchy kernel defined with respect to complex variables in tubes <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><mi>C</mi><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <em>C</em> is a cone in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We then apply a defined ultradistribution to this extended kernel function to obtain the <em>CWT</em> that we study. Properties of this <em>CWT</em> for ultradistributions which we obtain concern the analyticity of the transform, pointwise growth, norm growth, and boundary limit properties of the transform.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129737\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005189\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005189","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Cauchy wavelet transform for ultradistributions
The Cauchy wavelet is defined in 1-dimension, and the corresponding Cauchy wavelet transform (CWT) is constructed for functions. This wavelet and its corresponding kernel function for the transform are extended to n-dimension first as a product whose components concern the n components of the variable in . The structure of the CWT and its kernel function in this n-dimensional setting is then noted with the kernel function containing derivatives of the classical Cauchy kernel associated with tubes of the form where is any of the n-rants in . With this view of the form of the CWT we then extend the kernel function to have the form of derivatives of the Cauchy kernel defined with respect to complex variables in tubes where C is a cone in . We then apply a defined ultradistribution to this extended kernel function to obtain the CWT that we study. Properties of this CWT for ultradistributions which we obtain concern the analyticity of the transform, pointwise growth, norm growth, and boundary limit properties of the transform.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.