超分布的柯西小波变换

IF 1.2 3区 数学 Q1 MATHEMATICS
Richard D. Carmichael
{"title":"超分布的柯西小波变换","authors":"Richard D. Carmichael","doi":"10.1016/j.jmaa.2025.129737","DOIUrl":null,"url":null,"abstract":"<div><div>The Cauchy wavelet is defined in 1-dimension, and the corresponding Cauchy wavelet transform (<em>CWT</em>) is constructed for functions. This wavelet and its corresponding kernel function for the transform are extended to n-dimension first as a product whose components concern the n components of the variable in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The structure of the <em>CWT</em> and its kernel function in this n-dimensional setting is then noted with the kernel function containing derivatives of the classical Cauchy kernel associated with tubes of the form <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> is any of the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> n-rants in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. With this view of the form of the CWT we then extend the kernel function to have the form of derivatives of the Cauchy kernel defined with respect to complex variables in tubes <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><mi>C</mi><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <em>C</em> is a cone in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We then apply a defined ultradistribution to this extended kernel function to obtain the <em>CWT</em> that we study. Properties of this <em>CWT</em> for ultradistributions which we obtain concern the analyticity of the transform, pointwise growth, norm growth, and boundary limit properties of the transform.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129737"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cauchy wavelet transform for ultradistributions\",\"authors\":\"Richard D. Carmichael\",\"doi\":\"10.1016/j.jmaa.2025.129737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Cauchy wavelet is defined in 1-dimension, and the corresponding Cauchy wavelet transform (<em>CWT</em>) is constructed for functions. This wavelet and its corresponding kernel function for the transform are extended to n-dimension first as a product whose components concern the n components of the variable in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The structure of the <em>CWT</em> and its kernel function in this n-dimensional setting is then noted with the kernel function containing derivatives of the classical Cauchy kernel associated with tubes of the form <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> is any of the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> n-rants in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. With this view of the form of the CWT we then extend the kernel function to have the form of derivatives of the Cauchy kernel defined with respect to complex variables in tubes <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><mi>C</mi><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <em>C</em> is a cone in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We then apply a defined ultradistribution to this extended kernel function to obtain the <em>CWT</em> that we study. Properties of this <em>CWT</em> for ultradistributions which we obtain concern the analyticity of the transform, pointwise growth, norm growth, and boundary limit properties of the transform.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129737\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005189\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005189","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在一维空间定义柯西小波,对函数构造相应的柯西小波变换(CWT)。这个小波及其相应的变换核函数首先被扩展到n维,作为一个乘积,它的分量与Rn中变量的n个分量有关。在这个n维集合中,CWT及其核函数的结构被标记为核函数包含与Rn+iCν∧Cn形式的管相关的经典柯西核的导数,其中Cν是Rn中2n个n- λ中的任意一个。利用CWT形式的这种观点,我们扩展核函数,使其具有柯西核的导数形式,该形式是关于管TC=Rn+iC∧Cn中的复变量定义的,其中C是Rn中的一个锥。然后,我们将定义的超分布应用于该扩展核函数以获得我们研究的CWT。所得到的超分布CWT的性质涉及变换的解析性、点增长、范数增长和变换的边界极限性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Cauchy wavelet transform for ultradistributions
The Cauchy wavelet is defined in 1-dimension, and the corresponding Cauchy wavelet transform (CWT) is constructed for functions. This wavelet and its corresponding kernel function for the transform are extended to n-dimension first as a product whose components concern the n components of the variable in Rn. The structure of the CWT and its kernel function in this n-dimensional setting is then noted with the kernel function containing derivatives of the classical Cauchy kernel associated with tubes of the form Rn+iCνCn where Cν is any of the 2n n-rants in Rn. With this view of the form of the CWT we then extend the kernel function to have the form of derivatives of the Cauchy kernel defined with respect to complex variables in tubes TC=Rn+iCCn where C is a cone in Rn. We then apply a defined ultradistribution to this extended kernel function to obtain the CWT that we study. Properties of this CWT for ultradistributions which we obtain concern the analyticity of the transform, pointwise growth, norm growth, and boundary limit properties of the transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信