Topological structure of the set of solution for singular elliptic equations with a convective term

IF 1.2 3区 数学 Q1 MATHEMATICS
J.V. Goncalves , M.R. Marcial , O.H. Miyagaki , C.A.P. dos Santos
{"title":"Topological structure of the set of solution for singular elliptic equations with a convective term","authors":"J.V. Goncalves ,&nbsp;M.R. Marcial ,&nbsp;O.H. Miyagaki ,&nbsp;C.A.P. dos Santos","doi":"10.1016/j.jmaa.2025.129738","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we establish existence and nonexistence of solution to the quasilinear singular elliptic equation <span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>λ</mi><mi>β</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>f</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi></math></span>, under Dirichlet boundary conditions, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a bounded domain with smooth boundary ∂Ω, <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a real parameter, <span><math><mi>β</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> function, possibly singular at zero, in the sense that <span><math><mi>β</mi><mo>(</mo><mi>s</mi><mo>)</mo><mover><mrow><mo>→</mo></mrow><mrow><mi>s</mi><mo>→</mo><mn>0</mn></mrow></mover><mo>∞</mo></math></span>, and <span><math><mi>f</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is continuous. No monotonicity condition whatsoever is imposed upon <em>β</em>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129738"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005190","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we establish existence and nonexistence of solution to the quasilinear singular elliptic equation Δpu=λβ(u)|u|p+finΩ, under Dirichlet boundary conditions, where ΩRN is a bounded domain with smooth boundary ∂Ω, λ>0 is a real parameter, β:(0,)(0,) is a C1 function, possibly singular at zero, in the sense that β(s)s0, and f:Ω[0,) is continuous. No monotonicity condition whatsoever is imposed upon β.
具有对流项的奇异椭圆方程解集的拓扑结构
本文建立了拟线性奇异椭圆方程- Δpu=λβ(u)|∇u|p+finΩ在Dirichlet边界条件下解的存在性和不存在性,其中Ω∧RN是光滑边界∂Ω的有界域,λ>;0是实参数,β:(0,∞)→(0,∞)是C1函数,可能在零处奇异,在β(s)→s→0∞,f:Ω→[0,∞)是连续的。β没有任何单调性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信