On a class of generalized Berezin type operators on the unit ball of Cn

IF 1.2 3区 数学 Q1 MATHEMATICS
Jin Lu , Ruhan Zhao , Lifang Zhou
{"title":"On a class of generalized Berezin type operators on the unit ball of Cn","authors":"Jin Lu ,&nbsp;Ruhan Zhao ,&nbsp;Lifang Zhou","doi":"10.1016/j.jmaa.2025.129745","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize boundedness of a class of generalized Berezin type operators <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>r</mi></mrow></msubsup></math></span> from a weighted Bergman space to a weighted Lebesgue space on the unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. These types of operators are crucial in characterizing Carleson measures through products of functions. By an improved method using Khinchine's inequality and Khinchine-Kahane-Kalton inequality, our result not only extends a previous result on these operators to a large scale, but also removes an extra restrictive condition to that result. When <span><math><mo>(</mo><mi>s</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>β</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, our result also recovers a recent result on boundedness of Berezin type operators. As an application, we provide an alternate proof of a necessary condition for the parameter <em>c</em> in the <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>β</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> boundedness of the Forelli-Rudin type operator <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129745"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005268","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize boundedness of a class of generalized Berezin type operators Sμs,β,r from a weighted Bergman space to a weighted Lebesgue space on the unit ball of Cn. These types of operators are crucial in characterizing Carleson measures through products of functions. By an improved method using Khinchine's inequality and Khinchine-Kahane-Kalton inequality, our result not only extends a previous result on these operators to a large scale, but also removes an extra restrictive condition to that result. When (s,β,r)=(0,β,1), our result also recovers a recent result on boundedness of Berezin type operators. As an application, we provide an alternate proof of a necessary condition for the parameter c in the LαpLβq boundedness of the Forelli-Rudin type operator Sa,b,c.
Cn单位球上的一类广义Berezin型算子
在Cn的单位球上刻画了一类广义Berezin型算子Sμs,β,r从加权Bergman空间到加权Lebesgue空间的有界性。这些类型的算子在通过函数积来表征Carleson测度时是至关重要的。通过Khinchine不等式和Khinchine- kahane - kalton不等式的改进方法,我们的结果不仅将以前关于这些算子的结果推广到更大的尺度上,而且还消除了该结果的一个额外的限制条件。当(s,β,r)=(0,β,1)时,我们的结果也恢复了Berezin型算子的有界性。作为应用,我们给出了Forelli-Rudin型算子Sa,b,c的Lαp−Lβq有界中参数c的一个必要条件的替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信