几类大数据粘弹性bsamadard问题的稳定性

IF 1.2 3区 数学 Q1 MATHEMATICS
Qunfeng Zhang, Hao Liu, Xianzhu Xiong
{"title":"几类大数据粘弹性bsamadard问题的稳定性","authors":"Qunfeng Zhang,&nbsp;Hao Liu,&nbsp;Xianzhu Xiong","doi":"10.1016/j.jmaa.2025.129732","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the Bénard problem of the incompressible viscoelastic fluids heated from below in a three-dimensional periodic cell, and establish the global (-in-time) existence result of unique strong solutions whenever the elasticity coefficient is sufficiently large relative to both norms (of energy space of solutions) of the initial velocity and the initial perturbation temperature. Our new result mathematically verifies that the elasticity under the large elasticity coefficient can inhibit the thermal instability even if both the initial velocity and the initial perturbation temperature are large. Moreover, the solutions also enjoy the exponential decay-in-time. In addition, using the method of vorticity estimates, we further derive that the convergence rate of the nonlinear system towards a linearized pressureless problem, as either time or elasticity coefficient approaches infinity, is in the form of <span><math><mi>c</mi><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Our converge rate is faster compared to the known rate <span><math><mi>c</mi><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> first found by Jiang–Jiang in <span><span>[23]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129732"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stability of the viscoelastic Bénard problem in some classes of large data\",\"authors\":\"Qunfeng Zhang,&nbsp;Hao Liu,&nbsp;Xianzhu Xiong\",\"doi\":\"10.1016/j.jmaa.2025.129732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the Bénard problem of the incompressible viscoelastic fluids heated from below in a three-dimensional periodic cell, and establish the global (-in-time) existence result of unique strong solutions whenever the elasticity coefficient is sufficiently large relative to both norms (of energy space of solutions) of the initial velocity and the initial perturbation temperature. Our new result mathematically verifies that the elasticity under the large elasticity coefficient can inhibit the thermal instability even if both the initial velocity and the initial perturbation temperature are large. Moreover, the solutions also enjoy the exponential decay-in-time. In addition, using the method of vorticity estimates, we further derive that the convergence rate of the nonlinear system towards a linearized pressureless problem, as either time or elasticity coefficient approaches infinity, is in the form of <span><math><mi>c</mi><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Our converge rate is faster compared to the known rate <span><math><mi>c</mi><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> first found by Jiang–Jiang in <span><span>[23]</span></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129732\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2500513X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500513X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维周期单元中从下加热的不可压缩粘弹性流体的b 纳德问题,建立了当弹性系数相对于初始速度和初始扰动温度的两个范数(能量空间的范数)都足够大时的唯一强解的全局(实时)存在性结果。新结果从数学上验证了大弹性系数下的弹性可以抑制热不稳定性,即使初始速度和初始扰动温度都很大。此外,解还具有指数级的时间衰减。此外,利用涡量估计的方法,我们进一步推导出当时间系数或弹性系数趋近于无穷大时,非线性系统向线性化无压问题的收敛速率为cκ−1。与Jiang-Jiang在[23]中首次发现的已知速率cκ−12相比,我们的收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability of the viscoelastic Bénard problem in some classes of large data
In this paper, we investigate the Bénard problem of the incompressible viscoelastic fluids heated from below in a three-dimensional periodic cell, and establish the global (-in-time) existence result of unique strong solutions whenever the elasticity coefficient is sufficiently large relative to both norms (of energy space of solutions) of the initial velocity and the initial perturbation temperature. Our new result mathematically verifies that the elasticity under the large elasticity coefficient can inhibit the thermal instability even if both the initial velocity and the initial perturbation temperature are large. Moreover, the solutions also enjoy the exponential decay-in-time. In addition, using the method of vorticity estimates, we further derive that the convergence rate of the nonlinear system towards a linearized pressureless problem, as either time or elasticity coefficient approaches infinity, is in the form of cκ1. Our converge rate is faster compared to the known rate cκ12 first found by Jiang–Jiang in [23].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信