Nodal solutions for fractional Kirchhoff problems involving critical exponential growth

IF 1.2 3区 数学 Q1 MATHEMATICS
R. Clemente , D. Pereira , P. Ubilla
{"title":"Nodal solutions for fractional Kirchhoff problems involving critical exponential growth","authors":"R. Clemente ,&nbsp;D. Pereira ,&nbsp;P. Ubilla","doi":"10.1016/j.jmaa.2025.129736","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we discuss the existence of least energy nodal solutions for a class of fractional Kirchhoff problems <span><math><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><msubsup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi></math></span> + <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi></math></span> = <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><mi>R</mi></math></span>, where <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is a nonlinear term with critical exponential growth. By using the deformation lemma, we obtain a least energy nodal solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> for this class of problems. Furthermore, the study of the asymptotic behavior of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> as <span><math><mi>b</mi><mo>→</mo><mn>0</mn></math></span> allows us to prove the existence of nodal solutions for the equation in the absence of the Kirchhoff term. To the best of our knowledge, this is the first result proving the existence of nodal solutions for this type of equations.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129736"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we discuss the existence of least energy nodal solutions for a class of fractional Kirchhoff problems (a+b[u]1/22)(Δ)1/2u + V(x)u = f(x,u) in R, where a>0, b0 and f(x,u) is a nonlinear term with critical exponential growth. By using the deformation lemma, we obtain a least energy nodal solution ub for this class of problems. Furthermore, the study of the asymptotic behavior of ub as b0 allows us to prove the existence of nodal solutions for the equation in the absence of the Kirchhoff term. To the best of our knowledge, this is the first result proving the existence of nodal solutions for this type of equations.
涉及临界指数增长的分数阶Kirchhoff问题的节点解
本文讨论了一类分数阶Kirchhoff问题(a+b[u]1/22)(−Δ)1/2u + V(x)u = f(x,u)在R中的最小能量节点解的存在性,其中a>;0, b≥0,f(x,u)是一个具有临界指数增长的非线性项。利用变形引理,得到了这类问题的最小能量节点解ub。进一步研究了b→0时ub的渐近行为,证明了该方程在没有Kirchhoff项时节点解的存在性。据我们所知,这是第一个证明这类方程节点解存在的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信