An evolutionary vector-valued variational inequality and Lagrange multiplier

IF 1.2 3区 数学 Q1 MATHEMATICS
Davide Azevedo, Lisa Santos
{"title":"An evolutionary vector-valued variational inequality and Lagrange multiplier","authors":"Davide Azevedo,&nbsp;Lisa Santos","doi":"10.1016/j.jmaa.2025.129746","DOIUrl":null,"url":null,"abstract":"<div><div>We prove existence and uniqueness of solution of an evolutionary vector-valued variational inequality defined in the convex set of vector valued functions <strong><em>v</em></strong> subject to the constraint <span><math><mo>|</mo><mi>v</mi><mo>|</mo><mo>≤</mo><mn>1</mn></math></span>. We show that we can write the variational inequality as a system of equations on the unknowns <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, where <em>λ</em> is a (unique) Lagrange multiplier belonging to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <strong><em>u</em></strong> solves the variational inequality. Given data <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mn>0</mn></mrow></msub><mo>)</mo></math></span> converging to <span><math><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo><mo>×</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, we prove the convergence of the solutions <span><math><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of the Lagrange multiplier problem to the solution of the limit problem, when we let <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129746"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500527X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove existence and uniqueness of solution of an evolutionary vector-valued variational inequality defined in the convex set of vector valued functions v subject to the constraint |v|1. We show that we can write the variational inequality as a system of equations on the unknowns (λ,u), where λ is a (unique) Lagrange multiplier belonging to Lp and u solves the variational inequality. Given data (fn,un0) converging to (f,u0) in L(QT)×H01(Ω), we prove the convergence of the solutions (λn,un) of the Lagrange multiplier problem to the solution of the limit problem, when we let n.
演化向量值变分不等式与拉格朗日乘数
在约束条件|v|≤1的向量值函数v的凸集中,证明了一类进化向量值变分不等式解的存在唯一性。我们证明了我们可以将变分不等式写成一个关于未知数(λ,u)的方程组,其中λ是属于Lp的(唯一)拉格朗日乘子,u解变分不等式。给定数据(fn,un0)在L∞(QT)×H01(Ω)上收敛于(f,u0),证明了当n→∞时,拉格朗日乘子问题的解(λn,un)收敛于极限问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信