{"title":"An evolutionary vector-valued variational inequality and Lagrange multiplier","authors":"Davide Azevedo, Lisa Santos","doi":"10.1016/j.jmaa.2025.129746","DOIUrl":null,"url":null,"abstract":"<div><div>We prove existence and uniqueness of solution of an evolutionary vector-valued variational inequality defined in the convex set of vector valued functions <strong><em>v</em></strong> subject to the constraint <span><math><mo>|</mo><mi>v</mi><mo>|</mo><mo>≤</mo><mn>1</mn></math></span>. We show that we can write the variational inequality as a system of equations on the unknowns <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, where <em>λ</em> is a (unique) Lagrange multiplier belonging to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <strong><em>u</em></strong> solves the variational inequality. Given data <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mn>0</mn></mrow></msub><mo>)</mo></math></span> converging to <span><math><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo><mo>×</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, we prove the convergence of the solutions <span><math><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of the Lagrange multiplier problem to the solution of the limit problem, when we let <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129746"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500527X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove existence and uniqueness of solution of an evolutionary vector-valued variational inequality defined in the convex set of vector valued functions v subject to the constraint . We show that we can write the variational inequality as a system of equations on the unknowns , where λ is a (unique) Lagrange multiplier belonging to and u solves the variational inequality. Given data converging to in , we prove the convergence of the solutions of the Lagrange multiplier problem to the solution of the limit problem, when we let .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.