具有收获的一般状态相关捕食者-猎物模型的周期解

IF 1.2 3区 数学 Q1 MATHEMATICS
Wenxiu Li
{"title":"具有收获的一般状态相关捕食者-猎物模型的周期解","authors":"Wenxiu Li","doi":"10.1016/j.jmaa.2025.130006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a general state-dependent predator-prey model incorporating impulsive harvesting on predators. By leveraging geometric theory of differential equations and successor function methods, we establish the existence of the order-1 periodic solution. Specifically, under the condition where the unique positive equilibrium exhibits unstable focus dynamics, we prove the existence of an order-1 periodic solution that is strictly contained within the continuous system's limit cycle. Furthermore, the necessary condition for the orbital stability of the order-1 periodic solution is depicted by employing the analogue of Poincaré criterion. Finally, a specific model is provided to exemplify the main results obtained from the general impulse system.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130006"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solution of a general state-dependent predator-prey model with harvesting\",\"authors\":\"Wenxiu Li\",\"doi\":\"10.1016/j.jmaa.2025.130006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates a general state-dependent predator-prey model incorporating impulsive harvesting on predators. By leveraging geometric theory of differential equations and successor function methods, we establish the existence of the order-1 periodic solution. Specifically, under the condition where the unique positive equilibrium exhibits unstable focus dynamics, we prove the existence of an order-1 periodic solution that is strictly contained within the continuous system's limit cycle. Furthermore, the necessary condition for the orbital stability of the order-1 periodic solution is depicted by employing the analogue of Poincaré criterion. Finally, a specific model is provided to exemplify the main results obtained from the general impulse system.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"554 2\",\"pages\":\"Article 130006\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25007875\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007875","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个包含捕食者脉冲收获的一般状态依赖的捕食者-猎物模型。利用微分方程的几何理论和后继函数方法,建立了1阶周期解的存在性。具体地说,在唯一正平衡具有不稳定焦点动力学的情况下,我们证明了连续系统极限环内严格包含的1阶周期解的存在性。此外,利用类似的庞卡罗准则描述了1阶周期解轨道稳定的必要条件。最后,给出了一个具体的模型来举例说明从一般脉冲系统中得到的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic solution of a general state-dependent predator-prey model with harvesting
This paper investigates a general state-dependent predator-prey model incorporating impulsive harvesting on predators. By leveraging geometric theory of differential equations and successor function methods, we establish the existence of the order-1 periodic solution. Specifically, under the condition where the unique positive equilibrium exhibits unstable focus dynamics, we prove the existence of an order-1 periodic solution that is strictly contained within the continuous system's limit cycle. Furthermore, the necessary condition for the orbital stability of the order-1 periodic solution is depicted by employing the analogue of Poincaré criterion. Finally, a specific model is provided to exemplify the main results obtained from the general impulse system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信