Positive solutions for prescribed mean curvature equations with critical growth in the whole R2

IF 1.2 3区 数学 Q1 MATHEMATICS
Wendel L. da Silva, Elisandra Gloss, Uberlandio B. Severo
{"title":"Positive solutions for prescribed mean curvature equations with critical growth in the whole R2","authors":"Wendel L. da Silva,&nbsp;Elisandra Gloss,&nbsp;Uberlandio B. Severo","doi":"10.1016/j.jmaa.2025.130009","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the problem<span><span><span><math><mo>−</mo><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mfrac><mrow><mi>∇</mi><mi>u</mi></mrow><mrow><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>, <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>V</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> is a continuous potential bounded away from zero and <span><math><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> is continuous and has exponential critical growth without the assumption of monotonicity on <span><math><mi>s</mi><mo>↦</mo><mi>f</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>/</mo><mi>s</mi></math></span>. Firstly, we truncate the prescribed mean curvature operator and obtain a nonzero solution for an auxiliary problem. Next, we use the Moser iteration technique to get some uniform estimates of this solution. We finalize by proving that the solution of the auxiliary problem is positive and actually is a solution of the original problem when <em>λ</em> is large.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130009"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007905","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the problemdiv(u1+|u|2)+V(x)u=λup1+f(u),uH1(R2),u>0, where p>2, λ>0, V:R2R is a continuous potential bounded away from zero and f:RR is continuous and has exponential critical growth without the assumption of monotonicity on sf(s)/s. Firstly, we truncate the prescribed mean curvature operator and obtain a nonzero solution for an auxiliary problem. Next, we use the Moser iteration technique to get some uniform estimates of this solution. We finalize by proving that the solution of the auxiliary problem is positive and actually is a solution of the original problem when λ is large.
在整个R2中具有临界增长的规定平均曲率方程的正解
本文研究了−div(∇u1+|∇u|2)+V(x)u=λup−1+f(u),u∈H1(R2),u>0,其中p>;2, λ>0, V:R2→R是一个有界远离零的连续势,f:R→R是连续的,在不假设s∈f(s)/s单调性的情况下具有指数临界增长。首先,截断规定的平均曲率算子,得到辅助问题的非零解。接下来,我们使用Moser迭代技术来获得该解决方案的一些统一估计。最后证明当λ较大时,辅助问题的解是正的,并且实际上是原问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信