Wendel L. da Silva, Elisandra Gloss, Uberlandio B. Severo
{"title":"Positive solutions for prescribed mean curvature equations with critical growth in the whole R2","authors":"Wendel L. da Silva, Elisandra Gloss, Uberlandio B. Severo","doi":"10.1016/j.jmaa.2025.130009","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the problem<span><span><span><math><mo>−</mo><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mfrac><mrow><mi>∇</mi><mi>u</mi></mrow><mrow><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>u</mi><mo>></mo><mn>0</mn><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span>, <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>V</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> is a continuous potential bounded away from zero and <span><math><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> is continuous and has exponential critical growth without the assumption of monotonicity on <span><math><mi>s</mi><mo>↦</mo><mi>f</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>/</mo><mi>s</mi></math></span>. Firstly, we truncate the prescribed mean curvature operator and obtain a nonzero solution for an auxiliary problem. Next, we use the Moser iteration technique to get some uniform estimates of this solution. We finalize by proving that the solution of the auxiliary problem is positive and actually is a solution of the original problem when <em>λ</em> is large.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130009"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007905","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the problem where , , is a continuous potential bounded away from zero and is continuous and has exponential critical growth without the assumption of monotonicity on . Firstly, we truncate the prescribed mean curvature operator and obtain a nonzero solution for an auxiliary problem. Next, we use the Moser iteration technique to get some uniform estimates of this solution. We finalize by proving that the solution of the auxiliary problem is positive and actually is a solution of the original problem when λ is large.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.