Random acoustic boundary conditions and Weyl's law for Laplace-Beltrami operators on non-smooth boundaries

IF 1.2 3区 数学 Q1 MATHEMATICS
Illya M. Karabash
{"title":"Random acoustic boundary conditions and Weyl's law for Laplace-Beltrami operators on non-smooth boundaries","authors":"Illya M. Karabash","doi":"10.1016/j.jmaa.2025.129985","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the engineering and photonics research on resonators in random or uncertain environments, we study rigorous randomizations of boundary conditions for wave equations of the acoustic-type in Lipschitz domains <span><math><mi>O</mi></math></span>. First, a parametrization of essentially all m-dissipative boundary conditions by contraction operators in the boundary <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-space is constructed with the use of m-boundary tuples (boundary value spaces). We consider randomizations of these contraction operators that lead to acoustic operators random in the resolvent sense. To this end, the use of Neumann-to-Dirichlet maps and Krein-type resolvent formulae is crucial. We give a description of random m-dissipative boundary conditions that produce acoustic operators with almost surely (a.s.) compact resolvents, and so, also with a.s. discrete spectra. For each particular applied model, one can choose a specific boundary condition from the constructed class either by means of optimization, or on the base of empirical observations. A mathematically convenient randomization is constructed in terms of eigenfunctions of the Laplace-Beltrami operator <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mo>∂</mo><mi>O</mi></mrow></msup></math></span> on the boundary <span><math><mo>∂</mo><mi>O</mi></math></span> of the domain. We show that for this randomization the compactness of the resolvent is connected with the Weyl-type asymptotics for the eigenvalues of <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mo>∂</mo><mi>O</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 129985"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007668","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the engineering and photonics research on resonators in random or uncertain environments, we study rigorous randomizations of boundary conditions for wave equations of the acoustic-type in Lipschitz domains O. First, a parametrization of essentially all m-dissipative boundary conditions by contraction operators in the boundary L2-space is constructed with the use of m-boundary tuples (boundary value spaces). We consider randomizations of these contraction operators that lead to acoustic operators random in the resolvent sense. To this end, the use of Neumann-to-Dirichlet maps and Krein-type resolvent formulae is crucial. We give a description of random m-dissipative boundary conditions that produce acoustic operators with almost surely (a.s.) compact resolvents, and so, also with a.s. discrete spectra. For each particular applied model, one can choose a specific boundary condition from the constructed class either by means of optimization, or on the base of empirical observations. A mathematically convenient randomization is constructed in terms of eigenfunctions of the Laplace-Beltrami operator ΔO on the boundary O of the domain. We show that for this randomization the compactness of the resolvent is connected with the Weyl-type asymptotics for the eigenvalues of ΔO.
非光滑边界上Laplace-Beltrami算子的随机声学边界条件和Weyl定律
在随机或不确定环境中谐振腔的工程和光子学研究的激励下,我们研究了声学型波方程在Lipschitz o域中边界条件的严格随机化。首先,利用m-边界元组(边值空间)构造了边界l2空间中基本上所有m-耗散边界条件的收缩算子参数化。我们考虑这些收缩算子的随机化,导致声学算子在解决意义上的随机化。为此,使用诺伊曼-狄利克雷映射和克林型分解公式是至关重要的。我们给出了随机m耗散边界条件的描述,这些条件产生具有几乎肯定(as)紧解的声学算符,因此也具有as离散谱。对于每个特定的应用模型,可以通过优化或根据经验观察从构造的类中选择特定的边界条件。一个数学上方便的随机化是根据拉普拉斯-贝尔特拉米算子Δ∂O在域的边界∂O上的特征函数构造的。我们证明了对于这种随机化,解的紧性与Δ∂O的特征值的weyl型渐近有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信