全局敏感性分析的一维加权poincarcarr不等式

IF 1.2 3区 数学 Q1 MATHEMATICS
David Heredia , Aldéric Joulin , Olivier Roustant
{"title":"全局敏感性分析的一维加权poincarcarr不等式","authors":"David Heredia ,&nbsp;Aldéric Joulin ,&nbsp;Olivier Roustant","doi":"10.1016/j.jmaa.2025.129992","DOIUrl":null,"url":null,"abstract":"<div><div>Global Sensitivity Analysis (GSA) is an active field of mathematics that aims at quantifying the influence of input parameters on complex systems arising in engineering. In this paper, we provide new perspectives on one-dimensional weighted Poincaré inequalities and apply them in GSA to establish derivative-based upper bounds and approximations of Sobol indices. In a first part, we provide new theoretical results for weighted Poincaré inequalities. Based on spectral properties of the associated diffusion operator, we study the construction of weights from monotonic functions, extending the classical case of linear functions. We then construct non-vanishing weights that guarantee the existence of an orthonormal basis of eigenfunctions. This allows us to approximate Sobol indices using Parseval formulas. In a second part we develop specific methods for GSA. We investigate the construction of data-driven weights from estimators of the main effects when they are monotonic. Finally, we illustrate numerically our results on two toy models and a real flooding application.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 129992"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On one dimensional weighted Poincaré inequalities for Global Sensitivity Analysis\",\"authors\":\"David Heredia ,&nbsp;Aldéric Joulin ,&nbsp;Olivier Roustant\",\"doi\":\"10.1016/j.jmaa.2025.129992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global Sensitivity Analysis (GSA) is an active field of mathematics that aims at quantifying the influence of input parameters on complex systems arising in engineering. In this paper, we provide new perspectives on one-dimensional weighted Poincaré inequalities and apply them in GSA to establish derivative-based upper bounds and approximations of Sobol indices. In a first part, we provide new theoretical results for weighted Poincaré inequalities. Based on spectral properties of the associated diffusion operator, we study the construction of weights from monotonic functions, extending the classical case of linear functions. We then construct non-vanishing weights that guarantee the existence of an orthonormal basis of eigenfunctions. This allows us to approximate Sobol indices using Parseval formulas. In a second part we develop specific methods for GSA. We investigate the construction of data-driven weights from estimators of the main effects when they are monotonic. Finally, we illustrate numerically our results on two toy models and a real flooding application.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"554 2\",\"pages\":\"Article 129992\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25007735\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007735","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

全局灵敏度分析(GSA)是一个活跃的数学领域,旨在量化输入参数对工程中出现的复杂系统的影响。本文给出了一维加权poincar不等式的新观点,并将其应用于GSA中,建立了基于导数的Sobol指数上界和近似。在第一部分中,我们给出了加权庞卡罗不等式的新的理论结果。基于相关扩散算子的谱性质,研究了单调函数的权值构造,推广了线性函数的经典情况。然后我们构造了保证特征函数的标准正交基存在的不消失权。这允许我们使用Parseval公式来近似Sobol指数。在第二部分中,我们开发了GSA的具体方法。我们研究了当主效应是单调的时候,由主效应的估计量来构造数据驱动的权重。最后,我们用两个玩具模型和一个实际的洪水应用来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On one dimensional weighted Poincaré inequalities for Global Sensitivity Analysis
Global Sensitivity Analysis (GSA) is an active field of mathematics that aims at quantifying the influence of input parameters on complex systems arising in engineering. In this paper, we provide new perspectives on one-dimensional weighted Poincaré inequalities and apply them in GSA to establish derivative-based upper bounds and approximations of Sobol indices. In a first part, we provide new theoretical results for weighted Poincaré inequalities. Based on spectral properties of the associated diffusion operator, we study the construction of weights from monotonic functions, extending the classical case of linear functions. We then construct non-vanishing weights that guarantee the existence of an orthonormal basis of eigenfunctions. This allows us to approximate Sobol indices using Parseval formulas. In a second part we develop specific methods for GSA. We investigate the construction of data-driven weights from estimators of the main effects when they are monotonic. Finally, we illustrate numerically our results on two toy models and a real flooding application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信