具有诺伊曼型非局部扩散的感染年龄结构SIR流行病模型的长期动力学

IF 1.2 3区 数学 Q1 MATHEMATICS
Qian Wen, Huimin Li, Youhui Su
{"title":"具有诺伊曼型非局部扩散的感染年龄结构SIR流行病模型的长期动力学","authors":"Qian Wen,&nbsp;Huimin Li,&nbsp;Youhui Su","doi":"10.1016/j.jmaa.2025.129987","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study a nonlocal dispersal susceptible-infected-removed (SIR) epidemic model with Neumann boundary condition, where the spatial movement of individuals is represented by nonlocal diffusion operator, and the density of infected individuals is related to the age of infection. Using the method of characteristics, we convert the system into a set of coupled reaction-diffusion equations and Volterra integral equations. We introduce the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> via a compact positive linear operator and demonstrate that when <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span>, the disease-free equilibrium is globally attractive, while if <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span>, the disease exhibits uniform strong persistence. Numerical simulations are also carried out to support our theoretical results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 1","pages":"Article 129987"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time dynamics of an infection age-structure SIR epidemic model with nonlocal diffusion of Neumann type\",\"authors\":\"Qian Wen,&nbsp;Huimin Li,&nbsp;Youhui Su\",\"doi\":\"10.1016/j.jmaa.2025.129987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we study a nonlocal dispersal susceptible-infected-removed (SIR) epidemic model with Neumann boundary condition, where the spatial movement of individuals is represented by nonlocal diffusion operator, and the density of infected individuals is related to the age of infection. Using the method of characteristics, we convert the system into a set of coupled reaction-diffusion equations and Volterra integral equations. We introduce the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> via a compact positive linear operator and demonstrate that when <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span>, the disease-free equilibrium is globally attractive, while if <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span>, the disease exhibits uniform strong persistence. Numerical simulations are also carried out to support our theoretical results.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"554 1\",\"pages\":\"Article 129987\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25007681\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007681","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有Neumann边界条件的非局部扩散易感-感染-去除(SIR)流行病模型,其中个体的空间运动由非局部扩散算子表示,感染个体的密度与感染年龄相关。利用特征化方法,将系统转化为一组耦合的反应扩散方程和Volterra积分方程。通过紧致正线性算子引入基本繁殖数R0,证明了当R0>;1时,无病平衡是全局吸引的,而当R0>;1时,疾病表现出一致的强持久性。数值模拟也支持了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-time dynamics of an infection age-structure SIR epidemic model with nonlocal diffusion of Neumann type
In this paper we study a nonlocal dispersal susceptible-infected-removed (SIR) epidemic model with Neumann boundary condition, where the spatial movement of individuals is represented by nonlocal diffusion operator, and the density of infected individuals is related to the age of infection. Using the method of characteristics, we convert the system into a set of coupled reaction-diffusion equations and Volterra integral equations. We introduce the basic reproduction number R0 via a compact positive linear operator and demonstrate that when R0<1, the disease-free equilibrium is globally attractive, while if R0>1, the disease exhibits uniform strong persistence. Numerical simulations are also carried out to support our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信