Journal of Mathematical Analysis and Applications最新文献

筛选
英文 中文
Killing mean curvature solitons from Riemannian submersions 黎曼淹没产生的平均曲率孤子
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-22 DOI: 10.1016/j.jmaa.2025.130088
Diego Artacho , Marie-Amélie Lawn , Miguel Ortega
{"title":"Killing mean curvature solitons from Riemannian submersions","authors":"Diego Artacho ,&nbsp;Marie-Amélie Lawn ,&nbsp;Miguel Ortega","doi":"10.1016/j.jmaa.2025.130088","DOIUrl":"10.1016/j.jmaa.2025.130088","url":null,"abstract":"<div><div>We present a new general construction of mean curvature flow solitons on manifolds admitting a nowhere-vanishing Killing vector field. Using Riemannian submersion techniques, we reduce the problem from a PDE to an ODE. As an application, we obtain new examples of rotators in hyperbolic space.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130088"},"PeriodicalIF":1.2,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145121103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synchronization of velocities in pipeline flow of blended gas 混合气管道流动速度同步
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-18 DOI: 10.1016/j.jmaa.2025.130078
Martin Gugat
{"title":"Synchronization of velocities in pipeline flow of blended gas","authors":"Martin Gugat","doi":"10.1016/j.jmaa.2025.130078","DOIUrl":"10.1016/j.jmaa.2025.130078","url":null,"abstract":"<div><div>We consider the pipeline flow of blended gas. The flow is governed by a coupled system where for each component we have the isothermal Euler equations with an additional velocity coupling term that couples the velocities of the different components. Our motivation is hydrogen blending in natural gas pipelines, which will play a role in the transition to renewable energies. We show that with suitable boundary conditions the velocities of the gas components synchronize exponentially fast, as long as the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of the synchronization error is outside of a certain interval where the size of the interval is determined by the order of the interaction terms. This indicates that in some cases for a mixture of <em>n</em> components it is justified to use a drift-flux model where it is assumed that all components flow with the same velocity. For the proofs we use an appropriately chosen Lyapunov function which is based upon the idea of relative energy.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130078"},"PeriodicalIF":1.2,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An extension of the spectral fractional Laplacian to non-homogeneous boundary condition on rectangular domains, with application to well-posedness for plate equation with structural damping 将谱分数阶拉普拉斯算子推广到矩形域上的非齐次边界条件,并应用于具有结构阻尼的板方程的适定性
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-18 DOI: 10.1016/j.jmaa.2025.130073
Julian Edward
{"title":"An extension of the spectral fractional Laplacian to non-homogeneous boundary condition on rectangular domains, with application to well-posedness for plate equation with structural damping","authors":"Julian Edward","doi":"10.1016/j.jmaa.2025.130073","DOIUrl":"10.1016/j.jmaa.2025.130073","url":null,"abstract":"<div><div>Let Δ be the Dirichlet Laplacian on a rectangular domain <span><math><mi>R</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We study the mapping properties of an extension of the spectral fractional Laplacian, <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span>, for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, when applied to functions satisfying non-homogeneous boundary conditions. A symmetry formula is proven. As an application, we prove well-posedness results for the structurally damped plate equation<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>ρ</mi><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></math></span></span></span> with non-homogeneous boundary conditions<span><span><span><math><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>Δ</mi><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>R</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>R</mi><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>)</mo><mo>.</mo></math></span></span></span> Other non-homogeneous boundary conditions are also considered.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130073"},"PeriodicalIF":1.2,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C⁎-supports and abnormalities of operator systems C -操作系统的支持和异常
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-18 DOI: 10.1016/j.jmaa.2025.130074
Raphaël Clouâtre , Colin Krisko
{"title":"C⁎-supports and abnormalities of operator systems","authors":"Raphaël Clouâtre ,&nbsp;Colin Krisko","doi":"10.1016/j.jmaa.2025.130074","DOIUrl":"10.1016/j.jmaa.2025.130074","url":null,"abstract":"<div><div>Let <em>S</em> be a concrete operator system represented on some Hilbert space <em>H</em>. A <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-support of <em>S</em> is the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra generated (via the Choi–Effros product) by <em>S</em> inside an injective operator system acting on <em>H</em>. By leveraging Hamana's theory, we show that such a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-support is unique precisely when <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>S</mi><mo>)</mo></math></span> (the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra generated in <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> with the usual product) is contained in every copy of the injective envelope of <em>S</em> that acts on <em>H</em>. Further, we demonstrate how the uniqueness of certain <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-supports can be used to give new characterizations of the unique extension property for ⁎-representations, as well as the hyperrigidity of <em>S</em>. In another direction, we utilize the collection of all <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-supports of <em>S</em> to describe the subspace generated by the so-called abnormalities of <em>S</em>, thereby complementing an earlier result of Kakariadis.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130074"},"PeriodicalIF":1.2,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Layer potential method for a Robin problem in Hardy spaces Hardy空间中Robin问题的层势法
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-17 DOI: 10.1016/j.jmaa.2025.130075
Huynh Cao Truong , Le Xuan Truong , Tan Duc Do , Nguyen Ngoc Trong
{"title":"Layer potential method for a Robin problem in Hardy spaces","authors":"Huynh Cao Truong ,&nbsp;Le Xuan Truong ,&nbsp;Tan Duc Do ,&nbsp;Nguyen Ngoc Trong","doi":"10.1016/j.jmaa.2025.130075","DOIUrl":"10.1016/j.jmaa.2025.130075","url":null,"abstract":"<div><div>Let Ω be a bounded Lipschitz domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. Within an appropriate framework, we use the layer potential method to show that the Robin problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>div</mi><mo>(</mo><mi>A</mi><mspace></mspace><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>(</mo><mi>A</mi><mspace></mspace><mi>∇</mi><mi>u</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>+</mo><mi>b</mi><mi>u</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></mtd></mtr></mtable></mrow></math></span></span></span> is uniquely solvable for all <span><math><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>, where <span><math><mi>ϵ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span> is a suitable constant depending on the Lipschitz character of ∂Ω and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> denotes the atomic Hardy space on the boundary of Ω.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130075"},"PeriodicalIF":1.2,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145159173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A class of spectral measures and its spectral eigenvalues 一类谱测度及其谱特征值
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-17 DOI: 10.1016/j.jmaa.2025.130079
Yan-Song Fu, Tiantian Li
{"title":"A class of spectral measures and its spectral eigenvalues","authors":"Yan-Song Fu,&nbsp;Tiantian Li","doi":"10.1016/j.jmaa.2025.130079","DOIUrl":"10.1016/j.jmaa.2025.130079","url":null,"abstract":"<div><div>In this paper we will investigate the harmonic analysis of a class of infinite convolutions <em>μ</em> on <span><math><mi>R</mi></math></span>. A necessary and sufficient condition for the Hilbert space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> has an orthonormal basis of exponential functions is given. Moreover, we give a complete characterization on the spectral eigenvalues of the spectral measure <em>μ</em>, that is, to find all real numbers <em>p</em> which corresponds to a discrete set Λ such that the sets <span><math><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>λ</mi><mi>x</mi></mrow></msup><mo>:</mo><mi>λ</mi><mo>∈</mo><mi>Λ</mi><mo>}</mo></math></span> and <span><math><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>p</mi><mi>λ</mi><mi>x</mi></mrow></msup><mo>:</mo><mi>λ</mi><mo>∈</mo><mi>Λ</mi><mo>}</mo></math></span> are both orthonormal bases for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130079"},"PeriodicalIF":1.2,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145159175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Strauss exponent for some k-evolution equation in the class of Boussinesq equations Boussinesq方程中某些k-演化方程的Strauss指数
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-17 DOI: 10.1016/j.jmaa.2025.130077
Marcello D'Abbicco, Antonio Lagioia
{"title":"The Strauss exponent for some k-evolution equation in the class of Boussinesq equations","authors":"Marcello D'Abbicco,&nbsp;Antonio Lagioia","doi":"10.1016/j.jmaa.2025.130077","DOIUrl":"10.1016/j.jmaa.2025.130077","url":null,"abstract":"<div><div>In this paper, we prove the existence of global small data solutions to the evolution equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mi>v</mi><mo>+</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>v</mi><mo>=</mo><mi>A</mi><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>v</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>A</mi><mo>=</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>a</mi><msup><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span> homogeneous of order <em>k</em>, and <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> or it is a more general power nonlinearity. We prove our result for <span><math><mi>α</mi><mo>&gt;</mo><mi>γ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>, where <em>γ</em> is the Strauss exponent for nonlinear equations, and r is the rank of the Hessian of <span><math><mi>a</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span>. We also consider the damped case, obtained adding <span><math><mo>+</mo><mi>A</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> to the left-hand side of the equation. We show that the effect of the dissipation is very weak, compared to the dispersion, however, it is sufficient to lower the existence exponent to some smaller, modified, Strauss exponent.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130077"},"PeriodicalIF":1.2,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145110020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcation analysis for a spatial memory diffusive model incorporating advection term and nonlocal maturation delay 包含平流项和非局部成熟延迟的空间记忆扩散模型的分岔分析
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-17 DOI: 10.1016/j.jmaa.2025.130072
Li Ma , Dan Wei , Xianhua Xie
{"title":"Bifurcation analysis for a spatial memory diffusive model incorporating advection term and nonlocal maturation delay","authors":"Li Ma ,&nbsp;Dan Wei ,&nbsp;Xianhua Xie","doi":"10.1016/j.jmaa.2025.130072","DOIUrl":"10.1016/j.jmaa.2025.130072","url":null,"abstract":"<div><div>A class of memory-based reaction-diffusion population models with nonlocal terms and double delays has been investigated in this research for the first time under homogeneous Dirichlet boundary conditions. Firstly, the Lyapunov-Schmidt reduction method is employed to establish the existence of non-homogeneous steady-state solutions. Simultaneously, the uniqueness and multiplicity of these solutions are also presented. Next, the local stability of the non-homogeneous steady-state solutions and sufficient conditions for the Hopf bifurcation are derived by discussing the characteristic equation near the non-homogeneous steady-state solutions <span><math><msubsup><mrow><mi>u</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Considering the non-homogeneous property of its characteristic equation which incorporates double delays and a non-self-adjoint operator, we will combine a prior estimation and geometric methods and prior estimation techniques to find all potential bifurcation values. We find that the presence of double delays may drive the dynamical behavior to be more complex. In addition, we also investigate the Hopf branch based only on memory delay in the model and explore the impact of the advection parameter on the generation of the Hopf branch: under some special conditions, the first critical value <span><math><msubsup><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>λ</mi></mrow></msubsup></math></span> for Hopf branch occurrence will increase with the advection term <em>α</em>, i.e., the advective term will decelerate the presence of Hopf bifurcation to some extent. Interestingly, this phenomenon is exactly opposite to the conclusion of Ma and Wei <span><span>[20]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130072"},"PeriodicalIF":1.2,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145159172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transverse FT-entropy for Riemannian foliations 黎曼叶理的横向ft -熵
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-15 DOI: 10.1016/j.jmaa.2025.130070
Dexie Lin
{"title":"Transverse FT-entropy for Riemannian foliations","authors":"Dexie Lin","doi":"10.1016/j.jmaa.2025.130070","DOIUrl":"10.1016/j.jmaa.2025.130070","url":null,"abstract":"<div><div>In this paper, we introduce an entropy functional on Riemannian foliations, inspired by the work of Perelman. We relate its gradient flow to the transverse Ricci flow via the foliation preserving diffeomorphisms. We show that it is monotonic along the transverse Ricci flow. Moreover, inspired by the work of Fuquan Fang and Yuguang Zhang, we give a sufficient condition for any codimension-4 Riemannian foliation to admit the transverse Einstein metric.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130070"},"PeriodicalIF":1.2,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete λ-hypersurfaces with constant norm of the second fundamental form 第二基本形式的常范数完备λ超曲面
IF 1.2 3区 数学
Journal of Mathematical Analysis and Applications Pub Date : 2025-09-15 DOI: 10.1016/j.jmaa.2025.130071
Pengpeng Cheng, Tongzhu Li
{"title":"Complete λ-hypersurfaces with constant norm of the second fundamental form","authors":"Pengpeng Cheng,&nbsp;Tongzhu Li","doi":"10.1016/j.jmaa.2025.130071","DOIUrl":"10.1016/j.jmaa.2025.130071","url":null,"abstract":"<div><div>In this paper, we introduce a new divergence theorem on a complete proper <em>λ</em>-hypersurface. By the new divergence theorem we classify <em>λ</em>-hypersurfaces under the conditions that the squared norm of the second fundamental form <em>S</em> and the 3-order mean curvature <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> are constant. In particular, when <span><math><mi>λ</mi><mo>=</mo><mn>0</mn></math></span>, the self-shrinker (i.e., 0-hypersurface) is either a hyperplane <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> passing through the origin, a cylinder <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>(</mo><msqrt><mrow><mi>k</mi></mrow></msqrt><mo>)</mo><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, or a round sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> with center at the origin.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130071"},"PeriodicalIF":1.2,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145118957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信