具有阶段结构的扩散捕食-食饵系统的分岔分析

IF 1.2 3区 数学 Q1 MATHEMATICS
Qianqian Sun , Chunjin Wei , Junjie Wei
{"title":"具有阶段结构的扩散捕食-食饵系统的分岔分析","authors":"Qianqian Sun ,&nbsp;Chunjin Wei ,&nbsp;Junjie Wei","doi":"10.1016/j.jmaa.2025.129850","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the dynamics of a diffusive predator-prey system with stage structure. The upper-lower solution method and the comparison principle are used in proving the nonnegativity of the solutions. Then the stability of the positive constant steady state solutions is determined by analyzing the distribution of the eigenvalues. Based on the analysis, a bifurcation set in a parameters plane is given, which shows how the dynamics change as the parameters vary. Furthermore, the potential Hopf bifurcations are explored. Finally, numerical simulations validate theoretical predictions and illustrate model dynamics.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129850"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation analysis of a diffusive predator-prey system with stage structure\",\"authors\":\"Qianqian Sun ,&nbsp;Chunjin Wei ,&nbsp;Junjie Wei\",\"doi\":\"10.1016/j.jmaa.2025.129850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the dynamics of a diffusive predator-prey system with stage structure. The upper-lower solution method and the comparison principle are used in proving the nonnegativity of the solutions. Then the stability of the positive constant steady state solutions is determined by analyzing the distribution of the eigenvalues. Based on the analysis, a bifurcation set in a parameters plane is given, which shows how the dynamics change as the parameters vary. Furthermore, the potential Hopf bifurcations are explored. Finally, numerical simulations validate theoretical predictions and illustrate model dynamics.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129850\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006316\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006316","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有阶段结构的扩散捕食-食饵系统的动力学问题。利用上下解法和比较原理证明了解的非负性。然后通过分析特征值的分布来确定正常稳态解的稳定性。在此基础上,给出了参数平面上的分岔集,该分岔集反映了动力学随参数变化的规律。进一步探讨了潜在的Hopf分岔。最后,数值模拟验证了理论预测并说明了模型动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation analysis of a diffusive predator-prey system with stage structure
In this paper, we consider the dynamics of a diffusive predator-prey system with stage structure. The upper-lower solution method and the comparison principle are used in proving the nonnegativity of the solutions. Then the stability of the positive constant steady state solutions is determined by analyzing the distribution of the eigenvalues. Based on the analysis, a bifurcation set in a parameters plane is given, which shows how the dynamics change as the parameters vary. Furthermore, the potential Hopf bifurcations are explored. Finally, numerical simulations validate theoretical predictions and illustrate model dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信