{"title":"双组分Camassa-Holm浅水系统的非均匀依赖性","authors":"Jinlu Li , Yanghai Yu , Weipeng Zhu","doi":"10.1016/j.jmaa.2025.129853","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the initial value problem to the two-component Camassa-Holm equation on the line. We give a new approach to studying non-uniform dependence on initial data. We prove that the solution map of this problem is not uniformly continuous in Sobolev spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> with <span><math><mi>s</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129853"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniform dependence for the two-component Camassa-Holm shallow water system\",\"authors\":\"Jinlu Li , Yanghai Yu , Weipeng Zhu\",\"doi\":\"10.1016/j.jmaa.2025.129853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the initial value problem to the two-component Camassa-Holm equation on the line. We give a new approach to studying non-uniform dependence on initial data. We prove that the solution map of this problem is not uniformly continuous in Sobolev spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> with <span><math><mi>s</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129853\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006341\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006341","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Non-uniform dependence for the two-component Camassa-Holm shallow water system
In this paper, we consider the initial value problem to the two-component Camassa-Holm equation on the line. We give a new approach to studying non-uniform dependence on initial data. We prove that the solution map of this problem is not uniformly continuous in Sobolev spaces with .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.