{"title":"Multi-bump solutions of the magnetic p-Laplacian Schrödinger equations with critical and logarithmic nonlinearities","authors":"Lulu Wei, Yueqiang Song","doi":"10.1016/j.jmaa.2025.130093","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the following magnetic <em>p</em>-Laplacian Schrödinger equations with critical and logarithmic nonlinearities in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>:<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>A</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>(</mo><mi>λ</mi><mi>Z</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>β</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mi>log</mi><mo></mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>=</mo><mtext>div</mtext><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>+</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>∇</mi><mi>u</mi><mo>+</mo><mi>i</mi><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>)</mo><mo>)</mo></math></span> denotes the magnetic <em>p</em>-Laplacian, the magnetic potential <span><math><mi>A</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></math></span> and the parameters <span><math><mi>λ</mi><mo>,</mo><mi>β</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>Z</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> are the nonnegative continuous functions, <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span> is the Sobolev critical exponent. Applying variational methods, multiple multi-bump solutions for the above equation have been obtained. More precisely, our findings demonstrate that if the zero set of <em>Z</em> possesses several isolated connected components <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the interior of <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is not empty and ∂Ω is smooth, then for <span><math><mi>λ</mi><mo>≥</mo><mn>1</mn></math></span> sufficiently large, a bump solution is confined in a neighborhood of <span><math><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>Γ</mi></mrow></msub><msub><mrow><mi>Ω</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for every non-empty subset <span><math><mi>Γ</mi><mo>⊂</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. Furthermore, let <span><math><mi>λ</mi><mo>≥</mo><mn>1</mn></math></span> be large enough, we also show that the above equation has at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span> multi-bump solutions. The novelty and characteristic of this paper lie in the simultaneous appearance of critical and logarithmic nonlinearities in this equation, and the results in this paper extend the subcritical case [39] to the critical case.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130093"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008741","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the following magnetic p-Laplacian Schrödinger equations with critical and logarithmic nonlinearities in : where , , denotes the magnetic p-Laplacian, the magnetic potential and the parameters , are the nonnegative continuous functions, is the Sobolev critical exponent. Applying variational methods, multiple multi-bump solutions for the above equation have been obtained. More precisely, our findings demonstrate that if the zero set of Z possesses several isolated connected components such that the interior of is not empty and ∂Ω is smooth, then for sufficiently large, a bump solution is confined in a neighborhood of for every non-empty subset . Furthermore, let be large enough, we also show that the above equation has at least multi-bump solutions. The novelty and characteristic of this paper lie in the simultaneous appearance of critical and logarithmic nonlinearities in this equation, and the results in this paper extend the subcritical case [39] to the critical case.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.