p的Muckenhoupt Ap距离权值的新表征 >

IF 1.2 3区 数学 Q1 MATHEMATICS
Ignacio Gómez Vargas
{"title":"p的Muckenhoupt Ap距离权值的新表征 >","authors":"Ignacio Gómez Vargas","doi":"10.1016/j.jmaa.2025.130091","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize the collection of sets <span><math><mi>E</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for which there exists <span><math><mi>θ</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> such that the distance weight <span><math><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>dist</mi><mspace></mspace><msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>θ</mi></mrow></msup></math></span> belongs to the Muckenhoupt class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. These sets exhibit a certain balance between the small-scale and large-scale pores that constitute their complement—a property we show to be more general than the so-called weak porosity condition, which in turn, and according to recent results, characterizes the sets with associated distance weights in the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> case. Furthermore, we verify the agreement between this new characterization and the properties of known examples of distance weights, that are either <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> weights or merely doubling weights, by means of a probabilistic approach that may be of interest by itself.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130091"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New characterizations of Muckenhoupt Ap distance weights for p > 1\",\"authors\":\"Ignacio Gómez Vargas\",\"doi\":\"10.1016/j.jmaa.2025.130091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We characterize the collection of sets <span><math><mi>E</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for which there exists <span><math><mi>θ</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> such that the distance weight <span><math><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>dist</mi><mspace></mspace><msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>θ</mi></mrow></msup></math></span> belongs to the Muckenhoupt class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. These sets exhibit a certain balance between the small-scale and large-scale pores that constitute their complement—a property we show to be more general than the so-called weak porosity condition, which in turn, and according to recent results, characterizes the sets with associated distance weights in the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> case. Furthermore, we verify the agreement between this new characterization and the properties of known examples of distance weights, that are either <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> weights or merely doubling weights, by means of a probabilistic approach that may be of interest by itself.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"556 1\",\"pages\":\"Article 130091\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008728\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008728","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们刻画集合E∧Rn的集合,其中存在θ∈R∈{0},使得距离权w(x)=dist(x,E)θ属于Muckenhoupt类Ap,其中p>;1。这些集合在构成它们互补的小尺度孔隙和大尺度孔隙之间表现出一定的平衡——我们认为这一特性比所谓的弱孔隙条件更为普遍,而根据最近的结果,弱孔隙条件反过来又表征了A1情况下具有相关距离权重的集合。此外,我们通过一种可能本身感兴趣的概率方法,验证了这种新的表征与已知距离权值的性质之间的一致性,这些例子要么是Ap权值,要么只是加倍权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New characterizations of Muckenhoupt Ap distance weights for p > 1
We characterize the collection of sets ERn for which there exists θR{0} such that the distance weight w(x)=dist(x,E)θ belongs to the Muckenhoupt class Ap, where p>1. These sets exhibit a certain balance between the small-scale and large-scale pores that constitute their complement—a property we show to be more general than the so-called weak porosity condition, which in turn, and according to recent results, characterizes the sets with associated distance weights in the A1 case. Furthermore, we verify the agreement between this new characterization and the properties of known examples of distance weights, that are either Ap weights or merely doubling weights, by means of a probabilistic approach that may be of interest by itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信