Xi-Chao Duan , Chenyu Zhu , Xue-Zhi Li , Eric Numfor , Maia Martcheva
{"title":"Dynamics and optimal control of an SIVR immuno-epidemiological model with standard incidence","authors":"Xi-Chao Duan , Chenyu Zhu , Xue-Zhi Li , Eric Numfor , Maia Martcheva","doi":"10.1016/j.jmaa.2025.129449","DOIUrl":"10.1016/j.jmaa.2025.129449","url":null,"abstract":"<div><div>Based on the immuno-epidemiological model concept, we propose a susceptible–infected–vaccinated–recovered epidemic model with between-host transmission and within-host infection, where disease transmission between hosts is described by a standard incidence rate and the within-host infection process is governed by a bilinear incidence rate. The basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo></math></span> in the between-host model strongly depends on the within-host infection process. If <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo><mo><</mo><mn>1</mn></math></span>, the disease-free steady state <span><math><msup><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> of the between-host epidemic model is locally stable, and if <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>ψ</mi><mo>)</mo><mo>></mo><mn>1</mn></math></span>, the endemic steady state <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of the between-host epidemic model is locally stable. If <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo><</mo><mn>1</mn></math></span>, the disease-free steady state <span><math><msup><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> of the between-host epidemic model is globally stable. Furthermore, to better understand the roles of within-host treatment and between-host control in disease transmission, we formulated and studied an optimal control problem for the immuno-epidemiological model involving treatment and vaccination. Numerical simulations were conducted to demonstrate the effectiveness of the control strategies in various infection processes. The results showed that the duration of within-host treatment must be longer than the duration of vaccination to better control the spread of the disease.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129449"},"PeriodicalIF":1.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143636627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo P. Bonorino , Lucas P. Dutra , Filipe J. dos Santos
{"title":"Convergence at infinity for solutions of nonhomogeneous degenerate and singular elliptic equations in exterior domains","authors":"Leonardo P. Bonorino , Lucas P. Dutra , Filipe J. dos Santos","doi":"10.1016/j.jmaa.2025.129476","DOIUrl":"10.1016/j.jmaa.2025.129476","url":null,"abstract":"<div><div>In this work, we investigate the existence of the limit at infinity of weak solutions of the nonhomogeneous equation <span><math><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mspace></mspace><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>A</mi><mo>(</mo><mspace></mspace><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mspace></mspace><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>f</mi></math></span> in the exterior domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>﹨</mo><mi>K</mi></math></span>, where <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a compact set. Indeed, for any <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we prove that the solutions converge at infinity if <em>A</em> satisfies some growth conditions and <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> has some decay property. Moreover, for <span><math><mi>p</mi><mo>></mo><mi>n</mi></math></span> we can show that the solutions converge at some rate and, for <span><math><mi>p</mi><mo><</mo><mi>n</mi></math></span>, the convergence holds even for some unbounded <em>f</em>. In addition, for <span><math><mi>p</mi><mo>></mo><mi>n</mi></math></span>, we show that for any continuous function <em>ϕ</em> defined on ∂<em>K</em>, the problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mspace></mspace><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>A</mi><mo>(</mo><mspace></mspace><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mspace></mspace><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>f</mi></mtd><mtd><mtext> in </mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>﹨</mo><mi>K</mi></mtd></mtr><mtr><mtd><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>u</mi><mo>=</mo><mi>ϕ</mi><mo>,</mo></mtd><mtd><mtext> on </mtext><mo>∂</mo><mi>K</mi></mtd></mtr></mtable></mrow></math></span></span></span> has a bounded weak solution in <span><math><mi>C</mi><mo>(</mo><mover><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>﹨</mo><mi>K</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>∩</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>﹨</mo><mi>K</mi><mo>)</mo></math></span>, provided <em>A</em> and <em>f</em> are suitable. Furthermore, if <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129476"},"PeriodicalIF":1.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Free boundary problem governed by a non-linear diffusion-convection equation with Neumann condition","authors":"Adriana C. Briozzo","doi":"10.1016/j.jmaa.2025.129461","DOIUrl":"10.1016/j.jmaa.2025.129461","url":null,"abstract":"<div><div>We consider a one-dimensional free boundary problem governed by a nonlinear diffusion - convection equation with a Neumann condition at fixed face <span><math><mi>x</mi><mo>=</mo><mn>0</mn></math></span>, which is variable in time and a like Stefan convective condition on the free boundary. Through successive transformations, an integral representation of the problem is obtained that involves a system of coupled nonlinear integral equations. Existence of the solution is obtained for all times by using fixed point theorems.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129461"},"PeriodicalIF":1.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143621371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The finite spectrum problems for Dirac operators","authors":"Fangyuan Zhang, Kun Li, Jinming Cai","doi":"10.1016/j.jmaa.2025.129444","DOIUrl":"10.1016/j.jmaa.2025.129444","url":null,"abstract":"<div><div>In the present paper, the finite spectrum problem of Dirac operators is studied. For each nonnegative integer <em>m</em>, we construct a class of regular Dirac operator which has at most <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span> eigenvalues. The method presented is based on choosing the coefficients of the Dirac equation such that they are alternatively zero on consecutive subintervals and iterative construction of the characteristic function.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129444"},"PeriodicalIF":1.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143636615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The algebra D(W) via strong Darboux transformations","authors":"Ignacio Bono Parisi, Ines Pacharoni","doi":"10.1016/j.jmaa.2025.129443","DOIUrl":"10.1016/j.jmaa.2025.129443","url":null,"abstract":"<div><div>The Matrix Bochner Problem aims to classify weight matrices <em>W</em> such that the algebra <span><math><mi>D</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span>, of all differential operators that have a sequence of matrix-valued orthogonal polynomials for <em>W</em> as eigenfunctions, contains a second-order differential operator. In <span><span>[5]</span></span> it is proven that, under certain assumptions, the solutions to the Matrix Bochner Problem can be obtained through a noncommutative bispectral Darboux transformation of some classical scalar weights. The main aim of this paper is to introduce the concept of strong Darboux transformation among weight matrices and explore the relationship between the algebras <span><math><mi>D</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> when <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is a strong Darboux transformation of <em>W</em>. Starting from a direct sum of classical scalar weights <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, and leveraging our complete knowledge of the algebra of <span><math><mi>D</mi><mo>(</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>, we can easily determine the algebra <span><math><mi>D</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span> of a weight <em>W</em> that is a strong Darboux transformation of <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129443"},"PeriodicalIF":1.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143621370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guo-Niu Han , Hailing Li , Shi-Mei Ma , Jean Yeh , Yeong-Nan Yeh
{"title":"Analytical properties of derivative polynomials","authors":"Guo-Niu Han , Hailing Li , Shi-Mei Ma , Jean Yeh , Yeong-Nan Yeh","doi":"10.1016/j.jmaa.2025.129442","DOIUrl":"10.1016/j.jmaa.2025.129442","url":null,"abstract":"<div><div>We study analytical properties of derivative polynomials for tangent and secant, including recurrence relations, explicit formulas and expansion formulas. Firstly, we discuss the connections between central binomial coefficients and trigonometric functions. Secondly, we explore the similarity of derivative polynomials and Chebyshev polynomials. The idea is to choose the derivative polynomials as basis sets of a polynomial space. From this viewpoint, we give an expansion of the derivative polynomials for tangent in terms of the derivative polynomials for secant as well as a result in the reverse direction. Moreover, we get the Frobenius-type formulas for exterior peak and left peak polynomials. Finally, we discuss the connections between derivative polynomials and Eulerian polynomials.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129442"},"PeriodicalIF":1.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143679333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Properties for transposition solutions to operator-valued BSEEs, and applications to robust second order necessary conditions for controlled SEEs","authors":"Guangdong Jing","doi":"10.1016/j.jmaa.2025.129445","DOIUrl":"10.1016/j.jmaa.2025.129445","url":null,"abstract":"<div><div>This article is concerned with the second order necessary conditions for the stochastic optimal control problem of stochastic evolution equation with model uncertainty when the traditional Pontryagin-type maximum principle holds trivially and does not provide any information depicting the optimal control. The diffusion terms of the state equations are allowed to be control dependent with convex control constraints. Transposition method is adopted to deal with the adjoint operator-valued backward stochastic evolution equations, especially the correction terms. Besides, weak convergence arguments are used to obtain the optimal uncertainty reference measure, in which the regularities of the state processes, variational processes, and adjoint processes in the transposition sense are characterized. Malliavin calculus is applied to pave the way for differentiation theorem of Lebesgue type to deduce the pointwise robust optimality conditions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129445"},"PeriodicalIF":1.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A remark on the weak Harnack inequality","authors":"Diego Maldonado","doi":"10.1016/j.jmaa.2025.129446","DOIUrl":"10.1016/j.jmaa.2025.129446","url":null,"abstract":"<div><div>A short proof of the weak Harnack inequality based on the critical-density and double-ball properties is presented. The proof relies on basic properties of Muckenhoupt weights in general spaces of homogenous type.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129446"},"PeriodicalIF":1.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143562811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local existence and uniqueness of classical solutions for a compressible Oldroyd-B model with vacuum","authors":"Yubi Yin, Xingyang Zhang","doi":"10.1016/j.jmaa.2025.129450","DOIUrl":"10.1016/j.jmaa.2025.129450","url":null,"abstract":"<div><div>In this paper, we consider compressible Oldroyd-B equations in a bounded or unbounded domain Ω of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Assuming that the initial data satisfy a natural compatibility condition, we show the local existence and uniqueness of the classical solutions for Oldroyd-B equations through some high-order estimations with respect to time weighting. To obtain the result, the initial density does not need to differ from zero and may vanish in an open subset (vacuum) of Ω or decay at infinity when Ω is unbounded.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129450"},"PeriodicalIF":1.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotics for k-crank of k-colored partitions","authors":"Helen W.J. Zhang , Ying Zhong","doi":"10.1016/j.jmaa.2025.129447","DOIUrl":"10.1016/j.jmaa.2025.129447","url":null,"abstract":"<div><div>In this paper, we obtain asymptotic formulas for the <em>k</em>-crank of <em>k</em>-colored partitions. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo>;</mo><mi>n</mi><mo>)</mo></math></span> denote the number of <em>k</em>-colored partitions of <em>n</em> with a <em>k</em>-crank congruent to <em>a</em> mod <em>c</em>. For the cases <span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>, Fu and Tang derived several inequality relations for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo>;</mo><mi>n</mi><mo>)</mo></math></span> using generating functions. We employ the Hardy-Ramanujan Circle Method to extend the results of Fu and Tang. Furthermore, strict log-subadditivity for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>c</mi><mo>;</mo><mi>n</mi><mo>)</mo></math></span> is established.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129447"},"PeriodicalIF":1.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143577464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}