{"title":"Analysis of a nonisothermal and conserved phase field system with inertial term","authors":"Pierluigi Colli , Shunsuke Kurima","doi":"10.1016/j.jmaa.2025.129744","DOIUrl":"10.1016/j.jmaa.2025.129744","url":null,"abstract":"<div><div>This paper deals with a conserved phase field system that couples the energy balance equation with a Cahn–Hilliard type system including temperature and the inertial term for the order parameter. In the case without inertial term, the system under study was introduced by Caginalp. The inertial term is motivated by the occurrence of rapid phase transformation processes in nonequilibrium dynamics. A double-well potential is well chosen and the related nonlinearity governing the evolution is assumed to satisfy a suitable growth condition. The viscous variant of the Cahn–Hilliard system is also considered along with the inertial term. The existence of a global solution is proved via the analysis of some approximate problems with Yosida regularizations, and the use of the Cauchy–Lipschitz–Picard theorem in an abstract setting. Moreover, we study the convergence of the system, with or without the viscous term, as the inertial coefficient tends to zero.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129744"},"PeriodicalIF":1.2,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144222777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundedness of solutions to an alarm-taxis model with/without growth sources","authors":"Dongze Yan, Changchun Liu","doi":"10.1016/j.jmaa.2025.129747","DOIUrl":"10.1016/j.jmaa.2025.129747","url":null,"abstract":"<div><div>This paper is a further step in the study of the global boundedness of solutions for a predator-prey model with alarm-taxis. For cases where there are no logistic source terms, it will be shown that if certain parameters in the reaction functions satisfy specific conditions, then the classical solution exists globally and is bounded in higher dimensions. For the case that both the predators have growth restrictions, when <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span>, we find the relationship between the logistic degradation rates and the parameters in the functional response, which ensures the global existence and boundedness of the classical solution. Moreover, the results of this paper can encompass the boundedness results from <span><span>[14]</span></span> and <span><span>[21]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129747"},"PeriodicalIF":1.2,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144222404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lloc1-convergence of Jacobians of Sobolev homeomorphisms via area formula","authors":"Zofia Grochulska","doi":"10.1016/j.jmaa.2025.129741","DOIUrl":"10.1016/j.jmaa.2025.129741","url":null,"abstract":"<div><div>We prove that given a sequence of homeomorphisms <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> convergent in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>p</mi><mo>></mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, to a homeomorphism <em>f</em> which maps sets of measure zero onto sets of measure zero, Jacobians <span><math><mi>J</mi><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> converge to <em>Jf</em> in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. We prove it via Federer's area formula and investigation of when <span><math><mo>|</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>|</mo><mo>→</mo><mo>|</mo><mi>f</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>|</mo></math></span> as <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span> for Borel subsets <span><math><mi>E</mi><mo>⋐</mo><mi>Ω</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129741"},"PeriodicalIF":1.2,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the stability of the viscoelastic Bénard problem in some classes of large data","authors":"Qunfeng Zhang, Hao Liu, Xianzhu Xiong","doi":"10.1016/j.jmaa.2025.129732","DOIUrl":"10.1016/j.jmaa.2025.129732","url":null,"abstract":"<div><div>In this paper, we investigate the Bénard problem of the incompressible viscoelastic fluids heated from below in a three-dimensional periodic cell, and establish the global (-in-time) existence result of unique strong solutions whenever the elasticity coefficient is sufficiently large relative to both norms (of energy space of solutions) of the initial velocity and the initial perturbation temperature. Our new result mathematically verifies that the elasticity under the large elasticity coefficient can inhibit the thermal instability even if both the initial velocity and the initial perturbation temperature are large. Moreover, the solutions also enjoy the exponential decay-in-time. In addition, using the method of vorticity estimates, we further derive that the convergence rate of the nonlinear system towards a linearized pressureless problem, as either time or elasticity coefficient approaches infinity, is in the form of <span><math><mi>c</mi><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Our converge rate is faster compared to the known rate <span><math><mi>c</mi><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> first found by Jiang–Jiang in <span><span>[23]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129732"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lp-Hodge decomposition with Sobolev classes in sub-Riemannian contact manifolds","authors":"Annalisa Baldi , Alessandro Rosa","doi":"10.1016/j.jmaa.2025.129739","DOIUrl":"10.1016/j.jmaa.2025.129739","url":null,"abstract":"<div><div>Let <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>. In this article we establish an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-Hodge decomposition theorem on sub-Riemannian compact contact manifolds without boundary, related to the Rumin complex of differential forms. Given an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>- Rumin's form, we adopt an approach in the spirit of Morrey's book <span><span>[26]</span></span> (further performed in <span><span>[18]</span></span>) to obtain a decomposition with higher regular “primitives” i.e. that belong to suitable Sobolev classes. Our proof relies on recent results obtained in <span><span>[4]</span></span> and <span><span>[6]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129739"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144189460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On some logarithmic submajorisation inequalities of operators in finite von Neumann algebras","authors":"Ruifeng Sun, Jing Yang, Xingpeng Zhao","doi":"10.1016/j.jmaa.2025.129735","DOIUrl":"10.1016/j.jmaa.2025.129735","url":null,"abstract":"<div><div>In this paper, we prove some logarithmic submajorisation inequalities of operators in finite von Neumann algebras. In particular, the logarithmic submajorisation inequalities due to Boutata-Hirzallah-Kittaneh <span><span>[4]</span></span> are extended to the case of operators in a finite von Neumann algebra.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129735"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144213198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An evolutionary vector-valued variational inequality and Lagrange multiplier","authors":"Davide Azevedo, Lisa Santos","doi":"10.1016/j.jmaa.2025.129746","DOIUrl":"10.1016/j.jmaa.2025.129746","url":null,"abstract":"<div><div>We prove existence and uniqueness of solution of an evolutionary vector-valued variational inequality defined in the convex set of vector valued functions <strong><em>v</em></strong> subject to the constraint <span><math><mo>|</mo><mi>v</mi><mo>|</mo><mo>≤</mo><mn>1</mn></math></span>. We show that we can write the variational inequality as a system of equations on the unknowns <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, where <em>λ</em> is a (unique) Lagrange multiplier belonging to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <strong><em>u</em></strong> solves the variational inequality. Given data <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mn>0</mn></mrow></msub><mo>)</mo></math></span> converging to <span><math><mo>(</mo><mi>f</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo><mo>×</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, we prove the convergence of the solutions <span><math><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of the Lagrange multiplier problem to the solution of the limit problem, when we let <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129746"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144222398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nodal solutions for fractional Kirchhoff problems involving critical exponential growth","authors":"R. Clemente , D. Pereira , P. Ubilla","doi":"10.1016/j.jmaa.2025.129736","DOIUrl":"10.1016/j.jmaa.2025.129736","url":null,"abstract":"<div><div>In this paper we discuss the existence of least energy nodal solutions for a class of fractional Kirchhoff problems <span><math><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><msubsup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi></math></span> + <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi></math></span> = <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><mi>R</mi></math></span>, where <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is a nonlinear term with critical exponential growth. By using the deformation lemma, we obtain a least energy nodal solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> for this class of problems. Furthermore, the study of the asymptotic behavior of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> as <span><math><mi>b</mi><mo>→</mo><mn>0</mn></math></span> allows us to prove the existence of nodal solutions for the equation in the absence of the Kirchhoff term. To the best of our knowledge, this is the first result proving the existence of nodal solutions for this type of equations.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129736"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Cauchy wavelet transform for ultradistributions","authors":"Richard D. Carmichael","doi":"10.1016/j.jmaa.2025.129737","DOIUrl":"10.1016/j.jmaa.2025.129737","url":null,"abstract":"<div><div>The Cauchy wavelet is defined in 1-dimension, and the corresponding Cauchy wavelet transform (<em>CWT</em>) is constructed for functions. This wavelet and its corresponding kernel function for the transform are extended to n-dimension first as a product whose components concern the n components of the variable in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The structure of the <em>CWT</em> and its kernel function in this n-dimensional setting is then noted with the kernel function containing derivatives of the classical Cauchy kernel associated with tubes of the form <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ν</mi></mrow></msub></math></span> is any of the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> n-rants in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. With this view of the form of the CWT we then extend the kernel function to have the form of derivatives of the Cauchy kernel defined with respect to complex variables in tubes <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>i</mi><mi>C</mi><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <em>C</em> is a cone in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We then apply a defined ultradistribution to this extended kernel function to obtain the <em>CWT</em> that we study. Properties of this <em>CWT</em> for ultradistributions which we obtain concern the analyticity of the transform, pointwise growth, norm growth, and boundary limit properties of the transform.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129737"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144222406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological structure of the set of solution for singular elliptic equations with a convective term","authors":"J.V. Goncalves , M.R. Marcial , O.H. Miyagaki , C.A.P. dos Santos","doi":"10.1016/j.jmaa.2025.129738","DOIUrl":"10.1016/j.jmaa.2025.129738","url":null,"abstract":"<div><div>In this paper we establish existence and nonexistence of solution to the quasilinear singular elliptic equation <span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>λ</mi><mi>β</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>f</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi></math></span>, under Dirichlet boundary conditions, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a bounded domain with smooth boundary ∂Ω, <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> is a real parameter, <span><math><mi>β</mi><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> function, possibly singular at zero, in the sense that <span><math><mi>β</mi><mo>(</mo><mi>s</mi><mo>)</mo><mover><mrow><mo>→</mo></mrow><mrow><mi>s</mi><mo>→</mo><mn>0</mn></mrow></mover><mo>∞</mo></math></span>, and <span><math><mi>f</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is continuous. No monotonicity condition whatsoever is imposed upon <em>β</em>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129738"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}