真正二维空间中具有临界势的Brown-Ravenhall算子束缚态解的存在性和指数衰减

IF 1.2 3区 数学 Q1 MATHEMATICS
Magno B. Alves , Daniel H.T. Franco , Emmanuel Pereira
{"title":"真正二维空间中具有临界势的Brown-Ravenhall算子束缚态解的存在性和指数衰减","authors":"Magno B. Alves ,&nbsp;Daniel H.T. Franco ,&nbsp;Emmanuel Pereira","doi":"10.1016/j.jmaa.2025.129754","DOIUrl":null,"url":null,"abstract":"<div><div>We study the Brown-Ravenhall operator (the suitably projected Dirac operator) in dimension 2 using the Foldy-Wouthuysen unitary transformation. This allows us to write the operator in diagonalized form, so that the kinetic energy is equal to <span><math><mo>〈</mo><mi>ψ</mi><mo>,</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>ψ</mi><mo>〉</mo></math></span>. This suggests that we use some interesting results found in recent literature for equations driven by the fractional operator <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>m</mi><mo>&gt;</mo><mn>0</mn></math></span>. Here, we are interested in the Brown-Ravenhall operator perturbed by a short-range attractive potential given by a Bessel-Macdonald function (also known as <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential) to model relativistic effects in graphene. The existence of bound states for the Brown-Ravenhall operator with the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential is proven using a variant of the Caffarelli-Silvestre extension method, which permits to characterize <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> as an operator that maps a Dirichlet boundary condition to a Neumann-type condition via an extension problem in the upper-half space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>. In this process, the minimization occurs for an auxiliary energy functional associated with the weak solutions of the Neumann problem, defined on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup><mo>;</mo><mi>C</mi><mo>)</mo></math></span>. In addition, the lower bound for the smallest eigenvalue is established via Herbst operator. Exponential decay, in an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sense, of the bound states of the Brown-Ravenhall operator with the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential is also investigated.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129754"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and exponential decay of bound state solutions for the Brown-Ravenhall operator with a critical potential for non-confining systems in genuinely two-dimensional spaces\",\"authors\":\"Magno B. Alves ,&nbsp;Daniel H.T. Franco ,&nbsp;Emmanuel Pereira\",\"doi\":\"10.1016/j.jmaa.2025.129754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the Brown-Ravenhall operator (the suitably projected Dirac operator) in dimension 2 using the Foldy-Wouthuysen unitary transformation. This allows us to write the operator in diagonalized form, so that the kinetic energy is equal to <span><math><mo>〈</mo><mi>ψ</mi><mo>,</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>ψ</mi><mo>〉</mo></math></span>. This suggests that we use some interesting results found in recent literature for equations driven by the fractional operator <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>m</mi><mo>&gt;</mo><mn>0</mn></math></span>. Here, we are interested in the Brown-Ravenhall operator perturbed by a short-range attractive potential given by a Bessel-Macdonald function (also known as <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential) to model relativistic effects in graphene. The existence of bound states for the Brown-Ravenhall operator with the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential is proven using a variant of the Caffarelli-Silvestre extension method, which permits to characterize <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> as an operator that maps a Dirichlet boundary condition to a Neumann-type condition via an extension problem in the upper-half space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>. In this process, the minimization occurs for an auxiliary energy functional associated with the weak solutions of the Neumann problem, defined on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup><mo>;</mo><mi>C</mi><mo>)</mo></math></span>. In addition, the lower bound for the smallest eigenvalue is established via Herbst operator. Exponential decay, in an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sense, of the bound states of the Brown-Ravenhall operator with the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-potential is also investigated.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129754\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005359\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005359","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Foldy-Wouthuysen酉变换研究了二维空间中的Brown-Ravenhall算子(适当投影的Dirac算子)。这允许我们把算子写成对角化形式,使得动能等于< ψ,(- Δ+m2)1/2ψ >。这表明我们使用了最近文献中发现的一些有趣的结果,用于由分数算子(- Δ+m2)s驱动的方程,其中s∈(0,1)和m>;0。在这里,我们感兴趣的是由贝塞尔-麦克唐纳函数给出的短程吸引势(也称为k0势)扰动的Brown-Ravenhall算子,以模拟石墨烯中的相对论效应。使用一种变体的Caffarelli-Silvestre扩展方法证明了具有k0势的Brown-Ravenhall算子的束缚态的存在性,该方法允许将(- Δ+m2)1/2表征为通过上半空间R+3的扩展问题将Dirichlet边界条件映射为neumann型条件的算子。在此过程中,与H1(R+3;C)上定义的Neumann问题弱解相关的辅助能量泛函发生最小化。此外,利用Herbst算子建立了最小特征值的下界。本文还研究了具有k0势的Brown-Ravenhall算子的束缚态在L2意义上的指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and exponential decay of bound state solutions for the Brown-Ravenhall operator with a critical potential for non-confining systems in genuinely two-dimensional spaces
We study the Brown-Ravenhall operator (the suitably projected Dirac operator) in dimension 2 using the Foldy-Wouthuysen unitary transformation. This allows us to write the operator in diagonalized form, so that the kinetic energy is equal to ψ,(Δ+m2)1/2ψ. This suggests that we use some interesting results found in recent literature for equations driven by the fractional operator (Δ+m2)s with s(0,1) and m>0. Here, we are interested in the Brown-Ravenhall operator perturbed by a short-range attractive potential given by a Bessel-Macdonald function (also known as K0-potential) to model relativistic effects in graphene. The existence of bound states for the Brown-Ravenhall operator with the K0-potential is proven using a variant of the Caffarelli-Silvestre extension method, which permits to characterize (Δ+m2)1/2 as an operator that maps a Dirichlet boundary condition to a Neumann-type condition via an extension problem in the upper-half space R+3. In this process, the minimization occurs for an auxiliary energy functional associated with the weak solutions of the Neumann problem, defined on H1(R+3;C). In addition, the lower bound for the smallest eigenvalue is established via Herbst operator. Exponential decay, in an L2 sense, of the bound states of the Brown-Ravenhall operator with the K0-potential is also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信