有/无增长源报警的士模型解的有界性

IF 1.2 3区 数学 Q1 MATHEMATICS
Dongze Yan, Changchun Liu
{"title":"有/无增长源报警的士模型解的有界性","authors":"Dongze Yan,&nbsp;Changchun Liu","doi":"10.1016/j.jmaa.2025.129747","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is a further step in the study of the global boundedness of solutions for a predator-prey model with alarm-taxis. For cases where there are no logistic source terms, it will be shown that if certain parameters in the reaction functions satisfy specific conditions, then the classical solution exists globally and is bounded in higher dimensions. For the case that both the predators have growth restrictions, when <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span>, we find the relationship between the logistic degradation rates and the parameters in the functional response, which ensures the global existence and boundedness of the classical solution. Moreover, the results of this paper can encompass the boundedness results from <span><span>[14]</span></span> and <span><span>[21]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129747"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of solutions to an alarm-taxis model with/without growth sources\",\"authors\":\"Dongze Yan,&nbsp;Changchun Liu\",\"doi\":\"10.1016/j.jmaa.2025.129747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is a further step in the study of the global boundedness of solutions for a predator-prey model with alarm-taxis. For cases where there are no logistic source terms, it will be shown that if certain parameters in the reaction functions satisfy specific conditions, then the classical solution exists globally and is bounded in higher dimensions. For the case that both the predators have growth restrictions, when <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span>, we find the relationship between the logistic degradation rates and the parameters in the functional response, which ensures the global existence and boundedness of the classical solution. Moreover, the results of this paper can encompass the boundedness results from <span><span>[14]</span></span> and <span><span>[21]</span></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129747\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005281\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005281","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文进一步研究了一类具有报警计程车的捕食者-猎物模型解的全局有界性。对于不存在逻辑源项的情况,将证明如果反应函数中的某些参数满足特定条件,则经典解全局存在且在高维上有界。对于两种捕食者都有生长限制的情况,当n=2时,我们找到了logistic退化率与函数响应参数之间的关系,从而保证了经典解的全局存在性和有界性。此外,本文的结果可以包含[14]和[21]的有界性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of solutions to an alarm-taxis model with/without growth sources
This paper is a further step in the study of the global boundedness of solutions for a predator-prey model with alarm-taxis. For cases where there are no logistic source terms, it will be shown that if certain parameters in the reaction functions satisfy specific conditions, then the classical solution exists globally and is bounded in higher dimensions. For the case that both the predators have growth restrictions, when n=2, we find the relationship between the logistic degradation rates and the parameters in the functional response, which ensures the global existence and boundedness of the classical solution. Moreover, the results of this paper can encompass the boundedness results from [14] and [21].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信