{"title":"不可压缩广义Navier-Stokes方程整体弱解的几乎肯定存在性","authors":"Y.-X. Lin , Y.-G. Wang","doi":"10.1016/j.jmaa.2025.130042","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider the initial value problem of the incompressible generalized Navier-Stokes equations in torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The generalized Navier-Stokes equations are obtained by replacing the standard Laplacian in the classical Navier-Stokes equations by the fractional order Laplacian <span><math><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> with <span><math><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. After an appropriate randomization on the initial data, we obtain the almost sure existence of global weak solutions for initial data being in <span><math><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>α</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130042"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost sure existence of global weak solutions for incompressible generalized Navier-Stokes equations\",\"authors\":\"Y.-X. Lin , Y.-G. Wang\",\"doi\":\"10.1016/j.jmaa.2025.130042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider the initial value problem of the incompressible generalized Navier-Stokes equations in torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The generalized Navier-Stokes equations are obtained by replacing the standard Laplacian in the classical Navier-Stokes equations by the fractional order Laplacian <span><math><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> with <span><math><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. After an appropriate randomization on the initial data, we obtain the almost sure existence of global weak solutions for initial data being in <span><math><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>α</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 1\",\"pages\":\"Article 130042\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008236\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008236","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Almost sure existence of global weak solutions for incompressible generalized Navier-Stokes equations
In this paper we consider the initial value problem of the incompressible generalized Navier-Stokes equations in torus with . The generalized Navier-Stokes equations are obtained by replacing the standard Laplacian in the classical Navier-Stokes equations by the fractional order Laplacian with . After an appropriate randomization on the initial data, we obtain the almost sure existence of global weak solutions for initial data being in with .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.