On critical logarithmic double phase problems with locally defined perturbation

IF 1.2 3区 数学 Q1 MATHEMATICS
Yino B. Cueva Carranza , Marcos T.O. Pimenta , Francesca Vetro , Patrick Winkert
{"title":"On critical logarithmic double phase problems with locally defined perturbation","authors":"Yino B. Cueva Carranza ,&nbsp;Marcos T.O. Pimenta ,&nbsp;Francesca Vetro ,&nbsp;Patrick Winkert","doi":"10.1016/j.jmaa.2025.130047","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with critical logarithmic double phase problems of the form<span><span><span><math><mrow><mo>−</mo><mi>div</mi><mspace></mspace><mi>K</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>div</mi><mspace></mspace><mi>K</mi></math></span> is the logarithmic double phase operator defined by<span><span><span><math><mrow><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>)</mo><mo>+</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>e</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>)</mo></mrow></mfrac><mo>)</mo></mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span> <em>e</em> is Euler's number, <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>N</mi></math></span>, <span><math><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><mi>g</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><mo>[</mo><mo>−</mo><mi>ξ</mi><mo>,</mo><mi>ξ</mi><mo>]</mo><mo>→</mo><mi>R</mi></math></span> for <span><math><mi>ξ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a locally defined Carathéodory function satisfying a certain behavior near the origin. Based on appropriate truncation techniques and a suitable auxiliary problem, we prove the existence of a whole sequence of sign-changing solutions of the problem above which converges to 0 in the logarithmic Musielak-Orlicz Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130047"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008285","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with critical logarithmic double phase problems of the formdivK(u)=g(x,u)+|u|p2uin Ω,u=0on Ω, where divK is the logarithmic double phase operator defined bydiv(|u|p2u+μ(x)(log(e+|u|)+|u|q(e+|u|))|u|q2u), e is Euler's number, ΩRN, N2, is a bounded domain with Lipschitz boundary ∂Ω, 1<p<N, p<q<p=NpNp, 0μ()L(Ω) and g:Ω×[ξ,ξ]R for ξ>0 is a locally defined Carathéodory function satisfying a certain behavior near the origin. Based on appropriate truncation techniques and a suitable auxiliary problem, we prove the existence of a whole sequence of sign-changing solutions of the problem above which converges to 0 in the logarithmic Musielak-Orlicz Sobolev space W01,Hlog(Ω) and in L(Ω).
具有局部定摄动的临界对数双相问题
摘要关键对数双阶段的问题形式−divK (u) = g p u (x, u) + | |⁎−2印尼Ω,在∂u = 0Ω,其中divK是对数双相位算子定义bydiv(| |∇u p−2∇u +μ(x)(日志⁡(e + |∇u |) + |∇u | q (e + |∇u |)) |∇u | q−2∇u), e是欧拉数,Ω⊂RN, N≥2,与李普希茨有限域边界∂Ω,1 & lt;术中,N,术中;q< p⁎= NpN型−p 0≤μ(⋅)∈L∞(Ω)和g:Ω×(−ξ,ξ)→Rξ祝辞0是一个本地定义的Caratheodory函数满足某些行为在原点附近。基于适当的截断技术和一个合适的辅助问题,我们证明了上述问题在对数Musielak-Orlicz Sobolev空间W01、Hlog(Ω)和L∞(Ω)上收敛于0的整序列的变符号解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信