Yino B. Cueva Carranza , Marcos T.O. Pimenta , Francesca Vetro , Patrick Winkert
{"title":"On critical logarithmic double phase problems with locally defined perturbation","authors":"Yino B. Cueva Carranza , Marcos T.O. Pimenta , Francesca Vetro , Patrick Winkert","doi":"10.1016/j.jmaa.2025.130047","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with critical logarithmic double phase problems of the form<span><span><span><math><mrow><mo>−</mo><mi>div</mi><mspace></mspace><mi>K</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>div</mi><mspace></mspace><mi>K</mi></math></span> is the logarithmic double phase operator defined by<span><span><span><math><mrow><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>)</mo><mo>+</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>e</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>)</mo></mrow></mfrac><mo>)</mo></mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span> <em>e</em> is Euler's number, <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></math></span>, <span><math><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><mi>g</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><mo>[</mo><mo>−</mo><mi>ξ</mi><mo>,</mo><mi>ξ</mi><mo>]</mo><mo>→</mo><mi>R</mi></math></span> for <span><math><mi>ξ</mi><mo>></mo><mn>0</mn></math></span> is a locally defined Carathéodory function satisfying a certain behavior near the origin. Based on appropriate truncation techniques and a suitable auxiliary problem, we prove the existence of a whole sequence of sign-changing solutions of the problem above which converges to 0 in the logarithmic Musielak-Orlicz Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130047"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008285","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with critical logarithmic double phase problems of the form where is the logarithmic double phase operator defined bye is Euler's number, , , is a bounded domain with Lipschitz boundary ∂Ω, , , and for is a locally defined Carathéodory function satisfying a certain behavior near the origin. Based on appropriate truncation techniques and a suitable auxiliary problem, we prove the existence of a whole sequence of sign-changing solutions of the problem above which converges to 0 in the logarithmic Musielak-Orlicz Sobolev space and in .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.