Wasserstein空间中最优控制值函数的上界和下界

IF 1.2 3区 数学 Q1 MATHEMATICS
Yurii Averboukh, Aleksei Volkov
{"title":"Wasserstein空间中最优控制值函数的上界和下界","authors":"Yurii Averboukh,&nbsp;Aleksei Volkov","doi":"10.1016/j.jmaa.2025.130043","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the application of nonsmooth analysis in the Wasserstein space to finite-horizon optimal control problems for nonlocal continuity equations. We characterize the value function as a strict viscosity solution of the corresponding Bellman equation using the notions of <em>ε</em>-subdifferentials and <em>ε</em>-superdifferentials. The main paper's result is the fact that continuous subsolutions and supersolutions of this Bellman equation yield lower and upper bounds for the value function. These estimates rely on proximal calculus in the space of probability measures and the Moreau–Yosida regularization. Furthermore, the upper estimates provide a family of approximately optimal feedback strategies that realize the concept of proximal aiming.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130043"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper and lower bounds of the value function for optimal control in the Wasserstein space\",\"authors\":\"Yurii Averboukh,&nbsp;Aleksei Volkov\",\"doi\":\"10.1016/j.jmaa.2025.130043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the application of nonsmooth analysis in the Wasserstein space to finite-horizon optimal control problems for nonlocal continuity equations. We characterize the value function as a strict viscosity solution of the corresponding Bellman equation using the notions of <em>ε</em>-subdifferentials and <em>ε</em>-superdifferentials. The main paper's result is the fact that continuous subsolutions and supersolutions of this Bellman equation yield lower and upper bounds for the value function. These estimates rely on proximal calculus in the space of probability measures and the Moreau–Yosida regularization. Furthermore, the upper estimates provide a family of approximately optimal feedback strategies that realize the concept of proximal aiming.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 1\",\"pages\":\"Article 130043\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008248\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008248","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了Wasserstein空间中的非光滑分析在非局部连续方程有限视界最优控制问题中的应用。我们用ε-次微分和ε-超微分的概念将值函数表征为相应Bellman方程的严格黏性解。本文的主要结果是该Bellman方程的连续子解和超解给出了值函数的下界和上界。这些估计依赖于概率测度空间中的近端演算和Moreau-Yosida正则化。此外,上估计提供了一组近似最优反馈策略,实现了近端瞄准的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper and lower bounds of the value function for optimal control in the Wasserstein space
This paper explores the application of nonsmooth analysis in the Wasserstein space to finite-horizon optimal control problems for nonlocal continuity equations. We characterize the value function as a strict viscosity solution of the corresponding Bellman equation using the notions of ε-subdifferentials and ε-superdifferentials. The main paper's result is the fact that continuous subsolutions and supersolutions of this Bellman equation yield lower and upper bounds for the value function. These estimates rely on proximal calculus in the space of probability measures and the Moreau–Yosida regularization. Furthermore, the upper estimates provide a family of approximately optimal feedback strategies that realize the concept of proximal aiming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信