Yino B. Cueva Carranza , Marcos T.O. Pimenta , Francesca Vetro , Patrick Winkert
{"title":"具有局部定摄动的临界对数双相问题","authors":"Yino B. Cueva Carranza , Marcos T.O. Pimenta , Francesca Vetro , Patrick Winkert","doi":"10.1016/j.jmaa.2025.130047","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with critical logarithmic double phase problems of the form<span><span><span><math><mrow><mo>−</mo><mi>div</mi><mspace></mspace><mi>K</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>div</mi><mspace></mspace><mi>K</mi></math></span> is the logarithmic double phase operator defined by<span><span><span><math><mrow><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>)</mo><mo>+</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>e</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>)</mo></mrow></mfrac><mo>)</mo></mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span> <em>e</em> is Euler's number, <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></math></span>, <span><math><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><mi>g</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><mo>[</mo><mo>−</mo><mi>ξ</mi><mo>,</mo><mi>ξ</mi><mo>]</mo><mo>→</mo><mi>R</mi></math></span> for <span><math><mi>ξ</mi><mo>></mo><mn>0</mn></math></span> is a locally defined Carathéodory function satisfying a certain behavior near the origin. Based on appropriate truncation techniques and a suitable auxiliary problem, we prove the existence of a whole sequence of sign-changing solutions of the problem above which converges to 0 in the logarithmic Musielak-Orlicz Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130047"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On critical logarithmic double phase problems with locally defined perturbation\",\"authors\":\"Yino B. Cueva Carranza , Marcos T.O. Pimenta , Francesca Vetro , Patrick Winkert\",\"doi\":\"10.1016/j.jmaa.2025.130047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with critical logarithmic double phase problems of the form<span><span><span><math><mrow><mo>−</mo><mi>div</mi><mspace></mspace><mi>K</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>div</mi><mspace></mspace><mi>K</mi></math></span> is the logarithmic double phase operator defined by<span><span><span><math><mrow><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mo>(</mo><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>)</mo><mo>+</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>e</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo><mo>)</mo></mrow></mfrac><mo>)</mo></mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span> <em>e</em> is Euler's number, <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></math></span>, <span><math><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><mi>g</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><mo>[</mo><mo>−</mo><mi>ξ</mi><mo>,</mo><mi>ξ</mi><mo>]</mo><mo>→</mo><mi>R</mi></math></span> for <span><math><mi>ξ</mi><mo>></mo><mn>0</mn></math></span> is a locally defined Carathéodory function satisfying a certain behavior near the origin. Based on appropriate truncation techniques and a suitable auxiliary problem, we prove the existence of a whole sequence of sign-changing solutions of the problem above which converges to 0 in the logarithmic Musielak-Orlicz Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 1\",\"pages\":\"Article 130047\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008285\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008285","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要关键对数双阶段的问题形式−divK (u) = g p u (x, u) + | |⁎−2印尼Ω,在∂u = 0Ω,其中divK是对数双相位算子定义bydiv(| |∇u p−2∇u +μ(x)(日志(e + |∇u |) + |∇u | q (e + |∇u |)) |∇u | q−2∇u), e是欧拉数,Ω⊂RN, N≥2,与李普希茨有限域边界∂Ω,1 & lt;术中,N,术中;q< p⁎= NpN型−p 0≤μ(⋅)∈L∞(Ω)和g:Ω×(−ξ,ξ)→Rξ祝辞0是一个本地定义的Caratheodory函数满足某些行为在原点附近。基于适当的截断技术和一个合适的辅助问题,我们证明了上述问题在对数Musielak-Orlicz Sobolev空间W01、Hlog(Ω)和L∞(Ω)上收敛于0的整序列的变符号解的存在性。
On critical logarithmic double phase problems with locally defined perturbation
This paper deals with critical logarithmic double phase problems of the form where is the logarithmic double phase operator defined bye is Euler's number, , , is a bounded domain with Lipschitz boundary ∂Ω, , , and for is a locally defined Carathéodory function satisfying a certain behavior near the origin. Based on appropriate truncation techniques and a suitable auxiliary problem, we prove the existence of a whole sequence of sign-changing solutions of the problem above which converges to 0 in the logarithmic Musielak-Orlicz Sobolev space and in .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.