{"title":"Upper and lower bounds of the value function for optimal control in the Wasserstein space","authors":"Yurii Averboukh, Aleksei Volkov","doi":"10.1016/j.jmaa.2025.130043","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the application of nonsmooth analysis in the Wasserstein space to finite-horizon optimal control problems for nonlocal continuity equations. We characterize the value function as a strict viscosity solution of the corresponding Bellman equation using the notions of <em>ε</em>-subdifferentials and <em>ε</em>-superdifferentials. The main paper's result is the fact that continuous subsolutions and supersolutions of this Bellman equation yield lower and upper bounds for the value function. These estimates rely on proximal calculus in the space of probability measures and the Moreau–Yosida regularization. Furthermore, the upper estimates provide a family of approximately optimal feedback strategies that realize the concept of proximal aiming.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130043"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008248","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the application of nonsmooth analysis in the Wasserstein space to finite-horizon optimal control problems for nonlocal continuity equations. We characterize the value function as a strict viscosity solution of the corresponding Bellman equation using the notions of ε-subdifferentials and ε-superdifferentials. The main paper's result is the fact that continuous subsolutions and supersolutions of this Bellman equation yield lower and upper bounds for the value function. These estimates rely on proximal calculus in the space of probability measures and the Moreau–Yosida regularization. Furthermore, the upper estimates provide a family of approximately optimal feedback strategies that realize the concept of proximal aiming.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.