{"title":"Integral operators in the Schatten class on Dirichlet spaces","authors":"Xin-Qi Wen , Cheng Yuan","doi":"10.1016/j.jmaa.2025.130060","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize three integral operators in Schatten <em>p</em>-classes on Dirichlet spaces <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> in the unit disk <span><math><mi>D</mi></math></span> for <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>. The main results are threefold:<ul><li><span>(1)</span><span><div>If <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> and <em>g</em> is a holomorphic function in <span><math><mi>D</mi></math></span>, then the Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>, defined by<span><span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mi>z</mi></mrow></munderover><mi>f</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>ζ</mi><mo>)</mo><mi>d</mi><mi>ζ</mi><mo>,</mo></math></span></span></span> is in the Schatten <em>p</em>-class on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> if and only if<span><span><span><math><mrow><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><mfrac><mrow><mo>|</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mo>|</mo><mn>1</mn><mo>−</mo><mover><mrow><mi>w</mi></mrow><mrow><mo>¯</mo></mrow></mover><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>+</mo><mn>2</mn><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mfrac><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>A</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo><</mo><mo>∞</mo><mo>.</mo></mrow></math></span></span></span></div></span></li><li><span>(2)</span><span><div>If <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, <em>μ</em> is a finite Borel measure on <span><math><mi>D</mi></math></span>, then the Toeplitz operator <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> acting on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> is in the Schatten <em>p</em>-class if and only if<span><span><span><math><mrow><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi></mrow></msup><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><mfrac><mrow><mi>d</mi><mi>μ</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mo>|</mo><mn>1</mn><mo>−</mo><mover><mrow><mi>w</mi></mrow><mrow><mo>¯</mo></mrow></mover><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>A</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo><</mo><mo>∞</mo><mo>,</mo></mrow></math></span></span></span> where <em>t</em> is any (or some) nonnegative number such that <span><math><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi><mo>></mo><mi>max</mi><mo></mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>}</mo></math></span>.</div></span></li><li><span>(3)</span><span><div>If <em>g</em> is a holomorphic function in <span><math><mi>D</mi></math></span>, <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>, then the small Hankel operator <span><math><msubsup><mrow><mi>h</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> acting from <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> to the Sobolev space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is in the Schatten <em>p</em>-class if and only if <em>g</em> belongs to the Besov space <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></span></li></ul> These results answer the corresponding open problems left by Pau-Peláez <span><span>[12]</span></span> (J. Anal. Math. 120 (2013), 255-289).</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130060"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008418","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We characterize three integral operators in Schatten p-classes on Dirichlet spaces in the unit disk for and . The main results are threefold:
(1)
If and g is a holomorphic function in , then the Volterra operator , defined by is in the Schatten p-class on if and only if
(2)
If and , μ is a finite Borel measure on , then the Toeplitz operator acting on is in the Schatten p-class if and only if where t is any (or some) nonnegative number such that .
(3)
If g is a holomorphic function in , and , then the small Hankel operator acting from to the Sobolev space is in the Schatten p-class if and only if g belongs to the Besov space .
These results answer the corresponding open problems left by Pau-Peláez [12] (J. Anal. Math. 120 (2013), 255-289).
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.