An application of a discrete Sobolev inequality to discretised Kirchhoff equations

IF 1.2 3区 数学 Q1 MATHEMATICS
Christopher S. Goodrich
{"title":"An application of a discrete Sobolev inequality to discretised Kirchhoff equations","authors":"Christopher S. Goodrich","doi":"10.1016/j.jmaa.2025.130066","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a discrete Sobolev inequality, and we use this inequality to analyse the nonlocal discretised Kirchhoff equation<span><span><span><math><mo>−</mo><mi>A</mi><mo>(</mo><mo>(</mo><mi>a</mi><mo>⁎</mo><mo>(</mo><mi>g</mi><mo>∘</mo><mo>|</mo><mi>Δ</mi><mi>u</mi><mo>|</mo><mo>)</mo><mo>)</mo><mo>(</mo><mi>b</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>λ</mi><mi>f</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>u</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo><mtext>, </mtext><mi>n</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>b</mi><mo>}</mo><mo>,</mo></math></span></span></span> where ⁎ represents a finite convolution. The equation is a discrete analogue of the classical steady-state Kirchhoff equation in one space dimension. Existence of at least one positive solution is investigated under the assumption that the equation is subject to two-point boundary data such that <span><math><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Thus, both Dirichlet and right-focal data are captured by our results. An interesting aspect of our theory is that the coefficient function <em>A</em> may be both vanishing and sign-changing.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130066"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008479","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a discrete Sobolev inequality, and we use this inequality to analyse the nonlocal discretised Kirchhoff equationA((a(g|Δu|))(b+1))(Δ2u)(n)=λf(n,u(n+1))n{0,1,2,,b}, where ⁎ represents a finite convolution. The equation is a discrete analogue of the classical steady-state Kirchhoff equation in one space dimension. Existence of at least one positive solution is investigated under the assumption that the equation is subject to two-point boundary data such that u(0)=0. Thus, both Dirichlet and right-focal data are captured by our results. An interesting aspect of our theory is that the coefficient function A may be both vanishing and sign-changing.
离散Sobolev不等式在离散Kirchhoff方程中的应用
我们建立了一个离散Sobolev不等式,并用这个不等式来分析非局部离散Kirchhoff方程−a ((a (g°|Δu|))(b+1))(Δ2u)(n)=λf(n,u(n+1)), n∈{0,1,2,…,b},其中的表示一个有限卷积。该方程是一维空间中经典稳态基尔霍夫方程的离散模拟。在方程具有两点边界数据且u(0)=0的假设下,研究了至少一个正解的存在性。因此,我们的结果捕获了狄利克雷和右焦点数据。我们理论的一个有趣的方面是系数函数A可以是消失的,也可以是变号的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信