{"title":"离散Sobolev不等式在离散Kirchhoff方程中的应用","authors":"Christopher S. Goodrich","doi":"10.1016/j.jmaa.2025.130066","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a discrete Sobolev inequality, and we use this inequality to analyse the nonlocal discretised Kirchhoff equation<span><span><span><math><mo>−</mo><mi>A</mi><mo>(</mo><mo>(</mo><mi>a</mi><mo>⁎</mo><mo>(</mo><mi>g</mi><mo>∘</mo><mo>|</mo><mi>Δ</mi><mi>u</mi><mo>|</mo><mo>)</mo><mo>)</mo><mo>(</mo><mi>b</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>λ</mi><mi>f</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>u</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo><mtext>, </mtext><mi>n</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>b</mi><mo>}</mo><mo>,</mo></math></span></span></span> where ⁎ represents a finite convolution. The equation is a discrete analogue of the classical steady-state Kirchhoff equation in one space dimension. Existence of at least one positive solution is investigated under the assumption that the equation is subject to two-point boundary data such that <span><math><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Thus, both Dirichlet and right-focal data are captured by our results. An interesting aspect of our theory is that the coefficient function <em>A</em> may be both vanishing and sign-changing.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130066"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application of a discrete Sobolev inequality to discretised Kirchhoff equations\",\"authors\":\"Christopher S. Goodrich\",\"doi\":\"10.1016/j.jmaa.2025.130066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a discrete Sobolev inequality, and we use this inequality to analyse the nonlocal discretised Kirchhoff equation<span><span><span><math><mo>−</mo><mi>A</mi><mo>(</mo><mo>(</mo><mi>a</mi><mo>⁎</mo><mo>(</mo><mi>g</mi><mo>∘</mo><mo>|</mo><mi>Δ</mi><mi>u</mi><mo>|</mo><mo>)</mo><mo>)</mo><mo>(</mo><mi>b</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>λ</mi><mi>f</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>u</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo><mtext>, </mtext><mi>n</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>b</mi><mo>}</mo><mo>,</mo></math></span></span></span> where ⁎ represents a finite convolution. The equation is a discrete analogue of the classical steady-state Kirchhoff equation in one space dimension. Existence of at least one positive solution is investigated under the assumption that the equation is subject to two-point boundary data such that <span><math><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Thus, both Dirichlet and right-focal data are captured by our results. An interesting aspect of our theory is that the coefficient function <em>A</em> may be both vanishing and sign-changing.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 2\",\"pages\":\"Article 130066\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008479\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008479","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An application of a discrete Sobolev inequality to discretised Kirchhoff equations
We develop a discrete Sobolev inequality, and we use this inequality to analyse the nonlocal discretised Kirchhoff equation where ⁎ represents a finite convolution. The equation is a discrete analogue of the classical steady-state Kirchhoff equation in one space dimension. Existence of at least one positive solution is investigated under the assumption that the equation is subject to two-point boundary data such that . Thus, both Dirichlet and right-focal data are captured by our results. An interesting aspect of our theory is that the coefficient function A may be both vanishing and sign-changing.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.