{"title":"阿贝尔权的正交多项式的渐近性","authors":"Dušan Lj. Djukić","doi":"10.1016/j.jmaa.2025.130064","DOIUrl":null,"url":null,"abstract":"<div><div>Orthogonal polynomials <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> with respect to the Abel weight function <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>sinh</mi><mo></mo><mo>(</mo><mi>π</mi><mi>x</mi><mo>)</mo></mrow></mfrac></math></span> are used for numerical summation of alternating series by means of the Abel-Plana formula. Also, they are known to be related to Bernouli and Euler numbers. In this paper we first give an integral representation for these polynomials. Then, using this representation, we investigate the asymptotic behavior of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> when <em>n</em> is large.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130064"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of orthogonal polynomials for the Abel weight\",\"authors\":\"Dušan Lj. Djukić\",\"doi\":\"10.1016/j.jmaa.2025.130064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Orthogonal polynomials <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> with respect to the Abel weight function <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>sinh</mi><mo></mo><mo>(</mo><mi>π</mi><mi>x</mi><mo>)</mo></mrow></mfrac></math></span> are used for numerical summation of alternating series by means of the Abel-Plana formula. Also, they are known to be related to Bernouli and Euler numbers. In this paper we first give an integral representation for these polynomials. Then, using this representation, we investigate the asymptotic behavior of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> when <em>n</em> is large.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 2\",\"pages\":\"Article 130064\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008455\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008455","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotics of orthogonal polynomials for the Abel weight
Orthogonal polynomials with respect to the Abel weight function are used for numerical summation of alternating series by means of the Abel-Plana formula. Also, they are known to be related to Bernouli and Euler numbers. In this paper we first give an integral representation for these polynomials. Then, using this representation, we investigate the asymptotic behavior of when n is large.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.