Traveling wave solutions for a density-suppressed motility model with strong Allee effect

IF 1.2 3区 数学 Q1 MATHEMATICS
Cui Song, Zhi-Cheng Wang
{"title":"Traveling wave solutions for a density-suppressed motility model with strong Allee effect","authors":"Cui Song,&nbsp;Zhi-Cheng Wang","doi":"10.1016/j.jmaa.2025.130063","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate a density-suppressed motility model with strong Allee effect. By leveraging existing results on asymptotic autonomous systems, along with Fredholm theory and the Banach fixed-point theorem, we establish the existence of bistable traveling wave solutions using a perturbation argument. This result holds when the density-suppressed sensitivity is relatively small. Finally, we validate our main results through numerical simulations and further discuss wave patterns and the sign of the wave speed as the density-suppressed sensitivity varies.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130063"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008443","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate a density-suppressed motility model with strong Allee effect. By leveraging existing results on asymptotic autonomous systems, along with Fredholm theory and the Banach fixed-point theorem, we establish the existence of bistable traveling wave solutions using a perturbation argument. This result holds when the density-suppressed sensitivity is relatively small. Finally, we validate our main results through numerical simulations and further discuss wave patterns and the sign of the wave speed as the density-suppressed sensitivity varies.
具有强Allee效应的密度抑制运动模型的行波解
本文研究了一种具有强Allee效应的密度抑制运动模型。利用已有的关于渐近自治系统的结果,结合Fredholm理论和Banach不动点定理,我们利用摄动论证建立了双稳行波解的存在性。当密度抑制灵敏度相对较小时,此结果成立。最后,我们通过数值模拟验证了我们的主要结果,并进一步讨论了随密度抑制灵敏度变化的波形和波速符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信