狄利克雷空间上Schatten类的积分算子

IF 1.2 3区 数学 Q1 MATHEMATICS
Xin-Qi Wen , Cheng Yuan
{"title":"狄利克雷空间上Schatten类的积分算子","authors":"Xin-Qi Wen ,&nbsp;Cheng Yuan","doi":"10.1016/j.jmaa.2025.130060","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize three integral operators in Schatten <em>p</em>-classes on Dirichlet spaces <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> in the unit disk <span><math><mi>D</mi></math></span> for <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>. The main results are threefold:<ul><li><span>(1)</span><span><div>If <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and <em>g</em> is a holomorphic function in <span><math><mi>D</mi></math></span>, then the Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>, defined by<span><span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mi>z</mi></mrow></munderover><mi>f</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>ζ</mi><mo>)</mo><mi>d</mi><mi>ζ</mi><mo>,</mo></math></span></span></span> is in the Schatten <em>p</em>-class on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> if and only if<span><span><span><math><mrow><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><mfrac><mrow><mo>|</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mo>|</mo><mn>1</mn><mo>−</mo><mover><mrow><mi>w</mi></mrow><mrow><mo>¯</mo></mrow></mover><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>+</mo><mn>2</mn><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mfrac><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>A</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>&lt;</mo><mo>∞</mo><mo>.</mo></mrow></math></span></span></span></div></span></li><li><span>(2)</span><span><div>If <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, <em>μ</em> is a finite Borel measure on <span><math><mi>D</mi></math></span>, then the Toeplitz operator <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> acting on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> is in the Schatten <em>p</em>-class if and only if<span><span><span><math><mrow><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi></mrow></msup><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><mfrac><mrow><mi>d</mi><mi>μ</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mo>|</mo><mn>1</mn><mo>−</mo><mover><mrow><mi>w</mi></mrow><mrow><mo>¯</mo></mrow></mover><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>A</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>&lt;</mo><mo>∞</mo><mo>,</mo></mrow></math></span></span></span> where <em>t</em> is any (or some) nonnegative number such that <span><math><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>}</mo></math></span>.</div></span></li><li><span>(3)</span><span><div>If <em>g</em> is a holomorphic function in <span><math><mi>D</mi></math></span>, <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>, then the small Hankel operator <span><math><msubsup><mrow><mi>h</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> acting from <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> to the Sobolev space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is in the Schatten <em>p</em>-class if and only if <em>g</em> belongs to the Besov space <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></span></li></ul> These results answer the corresponding open problems left by Pau-Peláez <span><span>[12]</span></span> (J. Anal. Math. 120 (2013), 255-289).</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130060"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral operators in the Schatten class on Dirichlet spaces\",\"authors\":\"Xin-Qi Wen ,&nbsp;Cheng Yuan\",\"doi\":\"10.1016/j.jmaa.2025.130060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We characterize three integral operators in Schatten <em>p</em>-classes on Dirichlet spaces <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> in the unit disk <span><math><mi>D</mi></math></span> for <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>. The main results are threefold:<ul><li><span>(1)</span><span><div>If <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and <em>g</em> is a holomorphic function in <span><math><mi>D</mi></math></span>, then the Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>, defined by<span><span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mi>z</mi></mrow></munderover><mi>f</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>ζ</mi><mo>)</mo><mi>d</mi><mi>ζ</mi><mo>,</mo></math></span></span></span> is in the Schatten <em>p</em>-class on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> if and only if<span><span><span><math><mrow><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><mfrac><mrow><mo>|</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mo>|</mo><mn>1</mn><mo>−</mo><mover><mrow><mi>w</mi></mrow><mrow><mo>¯</mo></mrow></mover><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mo>+</mo><mn>2</mn><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mfrac><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>A</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>&lt;</mo><mo>∞</mo><mo>.</mo></mrow></math></span></span></span></div></span></li><li><span>(2)</span><span><div>If <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, <em>μ</em> is a finite Borel measure on <span><math><mi>D</mi></math></span>, then the Toeplitz operator <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> acting on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> is in the Schatten <em>p</em>-class if and only if<span><span><span><math><mrow><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi></mrow></msup><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><mfrac><mrow><mi>d</mi><mi>μ</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mo>|</mo><mn>1</mn><mo>−</mo><mover><mrow><mi>w</mi></mrow><mrow><mo>¯</mo></mrow></mover><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo>|</mo><mi>w</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>A</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>&lt;</mo><mo>∞</mo><mo>,</mo></mrow></math></span></span></span> where <em>t</em> is any (or some) nonnegative number such that <span><math><mi>α</mi><mo>+</mo><mn>2</mn><mi>t</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>}</mo></math></span>.</div></span></li><li><span>(3)</span><span><div>If <em>g</em> is a holomorphic function in <span><math><mi>D</mi></math></span>, <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>, then the small Hankel operator <span><math><msubsup><mrow><mi>h</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> acting from <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> to the Sobolev space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is in the Schatten <em>p</em>-class if and only if <em>g</em> belongs to the Besov space <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></span></li></ul> These results answer the corresponding open problems left by Pau-Peláez <span><span>[12]</span></span> (J. Anal. Math. 120 (2013), 255-289).</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 2\",\"pages\":\"Article 130060\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008418\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008418","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在单位圆盘D上的Dirichlet空间Dα上刻画了Schatten p-类中α>;0和0<;p<;∞上的三个积分算子。主要结果有三个:(1)如果0<;α<1<p<;∞且g在D上是全纯函数,则由tgf (z)=∫0zf(ζ)g ' (ζ)dζ定义的Volterra算子Tg在Dα上属于Schatten p-类,当且仅当∫D((1 - |w|2)α∫D|g ' (z)|2dAα(z)|1 - w¯z|2+2α)p2(1 - |w|2)p - 2dA(w)<∞。(2)如果α>;0和0<;p<∞,μ是D上的有限Borel测度,则作用于Dα上的Toeplitz算子Qμα是Schatten p类的当且仅当∫D((1−|w|2)α+2t∫Ddμ(z)|1−w¯z|2α+2t)p(1−|w|2)−2dA(w)<∞,其中t是任意(或某些)非负数,使得α+2t>;max ({1,1p})。(3)如果g是D中α>;0和0<;p≤1中的全纯函数,则当且仅当g属于Besov空间Bp时,从Dα作用到Sobolev空间Lα2的小Hankel算子hgα在Schatten p类中。这些结果回答了Pau-Peláez [12] (J. Anal)留下的相应开放问题。数学。120(2013),255-289。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral operators in the Schatten class on Dirichlet spaces
We characterize three integral operators in Schatten p-classes on Dirichlet spaces Dα in the unit disk D for α>0 and 0<p<. The main results are threefold:
  • (1)
    If 0<α<1<p< and g is a holomorphic function in D, then the Volterra operator Tg, defined byTgf(z)=0zf(ζ)g(ζ)dζ, is in the Schatten p-class on Dα if and only ifD((1|w|2)αD|g(z)|2dAα(z)|1w¯z|2+2α)p2(1|w|2)p2dA(w)<.
  • (2)
    If α>0 and 0<p<, μ is a finite Borel measure on D, then the Toeplitz operator Qμα acting on Dα is in the Schatten p-class if and only ifD((1|w|2)α+2tDdμ(z)|1w¯z|2α+2t)p(1|w|2)2dA(w)<, where t is any (or some) nonnegative number such that α+2t>max{1,1p}.
  • (3)
    If g is a holomorphic function in D, α>0 and 0<p1, then the small Hankel operator hgα acting from Dα to the Sobolev space Lα2 is in the Schatten p-class if and only if g belongs to the Besov space Bp.
These results answer the corresponding open problems left by Pau-Peláez [12] (J. Anal. Math. 120 (2013), 255-289).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信