考虑群体行为变化的时滞多群体SIR流行病模型的Hopf分岔

IF 1.2 3区 数学 Q1 MATHEMATICS
Toshikazu Kuniya
{"title":"考虑群体行为变化的时滞多群体SIR流行病模型的Hopf分岔","authors":"Toshikazu Kuniya","doi":"10.1016/j.jmaa.2025.130061","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we construct a time-delayed multi-group SIR epidemic model to discuss the impact of population behavior change on the occurrence of recurrent epidemic waves. We obtain the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and show that if <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></math></span>, then the disease-free equilibrium is globally asymptotically stable, whereas if <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span>, then the disease-free equilibrium is unstable and an endemic equilibrium exists. In a special two-group case, we show sufficient conditions for Hopf bifurcation and obtain index values that determine the direction, stability and period of bifurcated periodic solutions. By numerical simulation, we investigate the occurrence of periodic solutions in two groups representing an urban area and a non-urban area. We conclude that the epidemic size, response intensity of population behavior change and heterogeneity in two different groups can be the key factors of the occurrence of recurrent epidemic waves.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130061"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf bifurcation in a time-delayed multi-group SIR epidemic model for population behavior change\",\"authors\":\"Toshikazu Kuniya\",\"doi\":\"10.1016/j.jmaa.2025.130061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we construct a time-delayed multi-group SIR epidemic model to discuss the impact of population behavior change on the occurrence of recurrent epidemic waves. We obtain the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and show that if <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></math></span>, then the disease-free equilibrium is globally asymptotically stable, whereas if <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span>, then the disease-free equilibrium is unstable and an endemic equilibrium exists. In a special two-group case, we show sufficient conditions for Hopf bifurcation and obtain index values that determine the direction, stability and period of bifurcated periodic solutions. By numerical simulation, we investigate the occurrence of periodic solutions in two groups representing an urban area and a non-urban area. We conclude that the epidemic size, response intensity of population behavior change and heterogeneity in two different groups can be the key factors of the occurrence of recurrent epidemic waves.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 2\",\"pages\":\"Article 130061\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2500842X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500842X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们构建了一个时滞的多群体SIR流行病模型来讨论人群行为变化对反复流行波发生的影响。我们得到了基本繁殖数R0,并证明如果R0≤1,则无病平衡是全局渐近稳定的,如果R0>;1,则无病平衡是不稳定的,存在一个地方性平衡。在一个特殊的两群情况下,给出了Hopf分岔的充分条件,得到了决定分岔周期解的方向、稳定性和周期的指标值。通过数值模拟,我们研究了在代表城市区域和非城市区域的两组中周期解的出现。我们认为,疫情规模、人群行为变化的反应强度和两组人群的异质性可能是反复流行波发生的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopf bifurcation in a time-delayed multi-group SIR epidemic model for population behavior change
In this study, we construct a time-delayed multi-group SIR epidemic model to discuss the impact of population behavior change on the occurrence of recurrent epidemic waves. We obtain the basic reproduction number R0 and show that if R01, then the disease-free equilibrium is globally asymptotically stable, whereas if R0>1, then the disease-free equilibrium is unstable and an endemic equilibrium exists. In a special two-group case, we show sufficient conditions for Hopf bifurcation and obtain index values that determine the direction, stability and period of bifurcated periodic solutions. By numerical simulation, we investigate the occurrence of periodic solutions in two groups representing an urban area and a non-urban area. We conclude that the epidemic size, response intensity of population behavior change and heterogeneity in two different groups can be the key factors of the occurrence of recurrent epidemic waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信