Numerical dynamics of infection-age models with logistic growth and general nonlinear incidence

IF 1.2 3区 数学 Q1 MATHEMATICS
Zhuzan Wang , Zhanwen Yang , Huiqing Xie , Zhijie Chen
{"title":"Numerical dynamics of infection-age models with logistic growth and general nonlinear incidence","authors":"Zhuzan Wang ,&nbsp;Zhanwen Yang ,&nbsp;Huiqing Xie ,&nbsp;Zhijie Chen","doi":"10.1016/j.jmaa.2025.130062","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an age-structured viral dynamics model with Logistic growth and a general nonlinear incidence rate. We present the basic reproduction number of the continuous model and conduct a theoretical analysis of the model. For such a hybrid infinite-dimensional system with abstract nonlinear terms, the comprehensive numerical analysis is still pending. We address this problem by establishing a fully discrete linearly implicit scheme, and the non-negativity of the numerical scheme is confirmed by utilizing the theory of <em>M</em>-matrix. With a solvability analysis, the finite time convergence is proved for strong solutions. For long-time dynamics, by utilizing the exponential decay characteristic of the fundamental solution matrix, we established a 1-order convergence analysis for the numerical reproduction number <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>Δ</mi><mi>t</mi></mrow></msubsup></math></span>, and further proved the 1-order convergence property of numerical equilibria. By applying linearization techniques and comparison principles, we demonstrate that the disease-free equilibrium is globally asymptotically stable when <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>Δ</mi><mi>t</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></math></span>, and the endemic equilibrium is locally asymptotically stable when <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>Δ</mi><mi>t</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></math></span>. Hence, numerical processes almost completely replicate the dynamic properties of continuous system. At last, some numerical experiments demonstrate the obtained results.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 2","pages":"Article 130062"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008431","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an age-structured viral dynamics model with Logistic growth and a general nonlinear incidence rate. We present the basic reproduction number of the continuous model and conduct a theoretical analysis of the model. For such a hybrid infinite-dimensional system with abstract nonlinear terms, the comprehensive numerical analysis is still pending. We address this problem by establishing a fully discrete linearly implicit scheme, and the non-negativity of the numerical scheme is confirmed by utilizing the theory of M-matrix. With a solvability analysis, the finite time convergence is proved for strong solutions. For long-time dynamics, by utilizing the exponential decay characteristic of the fundamental solution matrix, we established a 1-order convergence analysis for the numerical reproduction number R0Δt, and further proved the 1-order convergence property of numerical equilibria. By applying linearization techniques and comparison principles, we demonstrate that the disease-free equilibrium is globally asymptotically stable when R0Δt<1, and the endemic equilibrium is locally asymptotically stable when R0Δt>1. Hence, numerical processes almost completely replicate the dynamic properties of continuous system. At last, some numerical experiments demonstrate the obtained results.
具有logistic增长和一般非线性发生率的感染年龄模型的数值动力学
我们考虑一个具有Logistic增长和一般非线性发病率的年龄结构病毒动力学模型。给出了连续模型的基本再现数,并对该模型进行了理论分析。对于这种具有抽象非线性项的混合无限维系统,还有待全面的数值分析。我们通过建立一个完全离散的线性隐式格式来解决这个问题,并利用m -矩阵理论证实了该数值格式的非负性。通过可解性分析,证明了强解的有限时间收敛性。对于长时间动力学,利用基本解矩阵的指数衰减特性,建立了数值再现数R0Δt的一阶收敛性分析,进一步证明了数值平衡点的一阶收敛性。利用线性化技术和比较原理,证明了当R0Δt<;1时无病平衡是全局渐近稳定的,当R0Δt>;1时地方病平衡是局部渐近稳定的。因此,数值过程几乎完全复制了连续系统的动态特性。最后通过数值实验验证了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信