Manuscripta Mathematica最新文献

筛选
英文 中文
Rational fibered cubic fourfolds 有理纤维立方四面体
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-07-14 DOI: 10.1007/s00229-024-01585-9
Hanine Awada
{"title":"Rational fibered cubic fourfolds","authors":"Hanine Awada","doi":"10.1007/s00229-024-01585-9","DOIUrl":"https://doi.org/10.1007/s00229-024-01585-9","url":null,"abstract":"<p>Some classes of cubic fourfolds are birational to fibrations over <span>({mathbb {P}}^2)</span>, where the fibers are rational surfaces. This is the case for cubics containing a plane (resp. an elliptic ruled surface), where the fibers are quadric surfaces (resp. del Pezzo sextic surfaces). It is known that the rationality of these cubic hypersurfaces is related to the rationality of these surfaces over the function field of <span>({mathbb {P}}^2)</span> and to the existence of rational (multi)sections of the fibrations. We study, in the moduli space of cubic fourfolds, the intersection of the divisor <span>({mathcal {C}}_{8})</span> (resp. <span>({mathcal {C}}_{18})</span>) with <span>({mathcal {C}}_{14})</span>, <span>({mathcal {C}}_{26})</span> and <span>({mathcal {C}}_{38})</span>, whose elements are known to be rational cubic fourfolds. We provide descriptions of the irreducible components of these intersections and give new explicit examples of rational cubics fibered in (quartic, quintic) del Pezzo surfaces or in quadric surfaces over <span>({mathbb {P}}^2)</span>. We also investigate the existence of rational sections for these fibrations. Under some mild assumptions on the singularities of the fibers, these properties can be translated in terms of Brauer classes on certain surfaces.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"17 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weyl’s law for arbitrary archimedean type 任意阿基米德类型的韦尔定律
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-07-08 DOI: 10.1007/s00229-024-01584-w
Ayan Maiti
{"title":"Weyl’s law for arbitrary archimedean type","authors":"Ayan Maiti","doi":"10.1007/s00229-024-01584-w","DOIUrl":"https://doi.org/10.1007/s00229-024-01584-w","url":null,"abstract":"<p>We generalize the work of Lindenstrauss and Venkatesh establishing Weyl’s Law for cusp forms from the spherical spectrum to arbitrary archimedean type. Weyl’s law for the spherical spectrum gives an asymptotic formula for the number of cusp forms that are bi-<span>(K_{infty })</span> invariant in terms of eigenvalue <i>T</i> of the Laplacian. We prove that an analogous asymptotic holds for cusp forms with archimedean type <span>(tau )</span>, where the main term is multiplied by <span>(dim {tau })</span>. While in the spherical case, the surjectivity of the Satake Map was used, in the more general case that is not available and we use Arthur’s Paley–Wiener theorem and multipliers.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"35 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On $$textrm{H}-$$ trivial line bundles on toric DM stacks of dim $$ge 3$$ 关于维数为$$ge 3$$的环状DM堆上的$$textrm{H}-$$琐细线束
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-07-08 DOI: 10.1007/s00229-024-01583-x
Lev Borisov, Chengxi Wang
{"title":"On $$textrm{H}-$$ trivial line bundles on toric DM stacks of dim $$ge 3$$","authors":"Lev Borisov, Chengxi Wang","doi":"10.1007/s00229-024-01583-x","DOIUrl":"https://doi.org/10.1007/s00229-024-01583-x","url":null,"abstract":"<p>We study line bundles on smooth toric Deligne-Mumford stacks <span>({mathbb {P}}_{mathbf {Sigma }})</span> of arbitrary dimension. We give a sufficient condition for when infinitely many line bundles on <span>({mathbb {P}}_{mathbf {Sigma }})</span> have trivial cohomology. In dimension three, this sufficient condition is also a necessary condition under the technical assumption that <span>(mathbf {Sigma })</span> has no more than one pair of collinear rays.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"5 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison between admissible and de Jong coverings in mixed characteristic 混合特征中可容许覆盖与德容覆盖的比较
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-07-05 DOI: 10.1007/s00229-024-01578-8
Sylvain Gaulhiac
{"title":"Comparison between admissible and de Jong coverings in mixed characteristic","authors":"Sylvain Gaulhiac","doi":"10.1007/s00229-024-01578-8","DOIUrl":"https://doi.org/10.1007/s00229-024-01578-8","url":null,"abstract":"<p>Let <i>X</i> be an adic space locally of finite type over a complete non-archimedean field <i>k</i>, and denote <span>({textbf {Cov}}_{X}^{textrm{oc}})</span> (resp. <span>({textbf {Cov}}_{X}^{textrm{adm}})</span>) the category of étale coverings of <i>X</i> that are locally for the Berkovich overconvergent topology (resp. for the admissible topology) disjoint union of finite étale coverings. There is a natural inclusion <span>({textbf {Cov}}_{X}^{textrm{oc}}subseteq {textbf {Cov}}_{X}^{textrm{adm}})</span>. Whether or not this inclusion is strict is a question initially asked by de Jong. Some partial answers have been given in the recents works of Achinger, Lara and Youcis in the finite or equal characteristic 0 cases. The present note shows that this inclusion can be strict when <i>k</i> is of mixed characteristic (0, <i>p</i>) and <i>p</i>-closed. As a consequence, the natural morphism of Noohi groups <span>(pi _1^{mathrm {dJ, , adm}}(mathcal {C}, overline{x})rightarrow pi _1^{mathrm {dJ, ,oc}}(mathcal {C},overline{x}) )</span> is not an isomorphism in general.\u0000</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"18 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The $${{,textrm{K},}}$$ -theory of the moduli stacks $${{mathcal {M}}}_2$$ and $$overline{{{mathcal {M}}}}_2$$ 模数堆栈 $${{mathcal {M}}_2$$ 和 $$overline{{{mathcal {M}}}}_2$$ 的理论
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-07-05 DOI: 10.1007/s00229-024-01581-z
Dan Edidin, Zhengning Hu
{"title":"The $${{,textrm{K},}}$$ -theory of the moduli stacks $${{mathcal {M}}}_2$$ and $$overline{{{mathcal {M}}}}_2$$","authors":"Dan Edidin, Zhengning Hu","doi":"10.1007/s00229-024-01581-z","DOIUrl":"https://doi.org/10.1007/s00229-024-01581-z","url":null,"abstract":"<p>We compute the integral Grothendieck rings of the moduli stacks, <span>({{mathcal {M}}}_2)</span>, <span>(overline{{{mathcal {M}}}}_2)</span> of smooth and stable curves of genus two respectively. We compute <span>({{,textrm{K},}}_0({{mathcal {M}}}_2))</span> by using the presentation of <span>({{mathcal {M}}}_2)</span> as a global quotient stack given by Vistoli (Invent Math 131(3):635–644, 1998). To compute the Grothendieck ring <span>({{,textrm{K},}}_0(overline{{{mathcal {M}}}}_2))</span> we decompose <span>(overline{{{mathcal {M}}}}_2)</span> as <span>(Delta _1)</span> and its complement <span>(overline{{{mathcal {M}}}}_2 setminus Delta _1)</span> and use their presentations as quotient stacks given by Larson (Algebr Geom 8 (3):286–318, 2021) to compute the Grothendieck rings. We show that they are torsion-free and this, together with the Riemann–Roch isomorphism allows us to ultimately give a presentation for the integral Grothendieck ring <span>({{,textrm{K},}}_0(overline{{{mathcal {M}}}}_2))</span>.\u0000</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"9 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On weaker notions for Kähler-Ricci solitons 关于 Kähler-Ricci 孤子的较弱概念
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-07-02 DOI: 10.1007/s00229-024-01577-9
Nefton Pali
{"title":"On weaker notions for Kähler-Ricci solitons","authors":"Nefton Pali","doi":"10.1007/s00229-024-01577-9","DOIUrl":"https://doi.org/10.1007/s00229-024-01577-9","url":null,"abstract":"<p>We show that shrinking Kähler-Ricci solitons over a compact Kähler manifold are gradient shrinking Kähler-Ricci solitons. The proof relies on a remarkable identity on the kernels of a real and a complex elliptic operator proved in our solution of the variational stability problem for gradient shrinking Kähler-Ricci solitons in Pali (Complex Manifolds 3(1):41–144, 2016).</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"138 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-thin rank jumps for double elliptic K3 surfaces 双椭圆 K3 曲面的非薄级跃迁
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-06-28 DOI: 10.1007/s00229-024-01554-2
Hector Pasten, Cecília Salgado
{"title":"Non-thin rank jumps for double elliptic K3 surfaces","authors":"Hector Pasten, Cecília Salgado","doi":"10.1007/s00229-024-01554-2","DOIUrl":"https://doi.org/10.1007/s00229-024-01554-2","url":null,"abstract":"<p>For an elliptic surface <span>(pi :Xrightarrow mathbb {P}^1)</span> defined over a number field <i>K</i>, a theorem of Silverman shows that for all but finitely many fibres above <i>K</i>-rational points, the resulting elliptic curve over <i>K</i> has Mordell-Weil rank at least as large as the rank of the group of sections of <span>(pi )</span>. When <i>X</i> is a <i>K</i>3 surface with two distinct elliptic fibrations, we show that the set of <i>K</i>-rational points of <span>(mathbb {P}^1)</span> for which this rank inequality is strict, is not a thin set, under certain hypothesis on the fibrations. Our results provide one of the first cases of this phenomenon beyond that of rational elliptic surfaces.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"25 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141525782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Components of the Hilbert scheme of smooth projective curves using ruled surfaces II: existence of non-reduced components 使用规则曲面的光滑投影曲线希尔伯特方案的成分 II:非还原成分的存在
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-06-28 DOI: 10.1007/s00229-024-01580-0
Youngook Choi, Hristo Iliev, Seonja Kim
{"title":"Components of the Hilbert scheme of smooth projective curves using ruled surfaces II: existence of non-reduced components","authors":"Youngook Choi, Hristo Iliev, Seonja Kim","doi":"10.1007/s00229-024-01580-0","DOIUrl":"https://doi.org/10.1007/s00229-024-01580-0","url":null,"abstract":"<p>Let <span>(mathcal {I}_{d,g,r})</span> be the union of irreducible components of the Hilbert scheme whose general points represent smooth, irreducible, non-degenerate curves of degree <i>d</i> and genus <i>g</i> in <span>(mathbb {P}^r)</span>. Using a family of curves found on ruled surfaces over smooth curves of genus <span>(gamma )</span>, we show that for <span>(gamma ge 7)</span> and <span>(g ge 6 gamma + 5)</span>, the scheme <span>(mathcal {I}_{2g-4gamma + 1, g, g - 3gamma + 1})</span> acquires a non-reduced component <span>(mathcal {D}^{prime })</span> such that <span>({text {dim}}T_{[X^{prime }]} mathcal {D}^{prime } = {text {dim}}mathcal {D}^{prime } + 1)</span> for a general point <span>([X^{prime }] in mathcal {D}^{prime })</span>.\u0000</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"28 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the 1- adjoint canonical divisor of a foliation 关于叶形的 1- 邻接正典除数
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-06-24 DOI: 10.1007/s00229-024-01579-7
Jun Lu, Xiao Hang Wu
{"title":"On the 1- adjoint canonical divisor of a foliation","authors":"Jun Lu, Xiao Hang Wu","doi":"10.1007/s00229-024-01579-7","DOIUrl":"https://doi.org/10.1007/s00229-024-01579-7","url":null,"abstract":"<p>In this paper, we describe the structure of the negative part of a Zariski decomposition of <span>(K_X+K_{{{mathcal {F}}}})</span> for a relatively minimal foliation <span>((X,{{mathcal {F}}}))</span> whenever <span>(K_X+K_{{{mathcal {F}}}})</span> is pseudoeffective.\u0000</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"47 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Langlands correspondences in $$ell $$ -adic coefficients $$ell $$ -adic系数中的本地朗兰兹对应关系
IF 0.6 4区 数学
Manuscripta Mathematica Pub Date : 2024-06-21 DOI: 10.1007/s00229-024-01582-y
Naoki Imai
{"title":"Local Langlands correspondences in $$ell $$ -adic coefficients","authors":"Naoki Imai","doi":"10.1007/s00229-024-01582-y","DOIUrl":"https://doi.org/10.1007/s00229-024-01582-y","url":null,"abstract":"<p>Let <span>(ell )</span> be a prime number different from the residue characteristic of a non-archimedean local field <i>F</i>. We give formulations of <span>(ell )</span>-adic local Langlands correspondences for connected reductive algebraic groups over <i>F</i>, which we conjecture to be independent of a choice of an isomorphism between the <span>(ell )</span>-adic coefficient field and the complex number field.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"77 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信