{"title":"混合特征中可容许覆盖与德容覆盖的比较","authors":"Sylvain Gaulhiac","doi":"10.1007/s00229-024-01578-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be an adic space locally of finite type over a complete non-archimedean field <i>k</i>, and denote <span>\\({\\textbf {Cov}}_{X}^{\\textrm{oc}}\\)</span> (resp. <span>\\({\\textbf {Cov}}_{X}^{\\textrm{adm}}\\)</span>) the category of étale coverings of <i>X</i> that are locally for the Berkovich overconvergent topology (resp. for the admissible topology) disjoint union of finite étale coverings. There is a natural inclusion <span>\\({\\textbf {Cov}}_{X}^{\\textrm{oc}}\\subseteq {\\textbf {Cov}}_{X}^{\\textrm{adm}}\\)</span>. Whether or not this inclusion is strict is a question initially asked by de Jong. Some partial answers have been given in the recents works of Achinger, Lara and Youcis in the finite or equal characteristic 0 cases. The present note shows that this inclusion can be strict when <i>k</i> is of mixed characteristic (0, <i>p</i>) and <i>p</i>-closed. As a consequence, the natural morphism of Noohi groups <span>\\(\\pi _1^{\\mathrm {dJ, \\, adm}}(\\mathcal {C}, \\overline{x})\\rightarrow \\pi _1^{\\mathrm {dJ, \\,oc}}(\\mathcal {C},\\overline{x}) \\)</span> is not an isomorphism in general.\n</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"18 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison between admissible and de Jong coverings in mixed characteristic\",\"authors\":\"Sylvain Gaulhiac\",\"doi\":\"10.1007/s00229-024-01578-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be an adic space locally of finite type over a complete non-archimedean field <i>k</i>, and denote <span>\\\\({\\\\textbf {Cov}}_{X}^{\\\\textrm{oc}}\\\\)</span> (resp. <span>\\\\({\\\\textbf {Cov}}_{X}^{\\\\textrm{adm}}\\\\)</span>) the category of étale coverings of <i>X</i> that are locally for the Berkovich overconvergent topology (resp. for the admissible topology) disjoint union of finite étale coverings. There is a natural inclusion <span>\\\\({\\\\textbf {Cov}}_{X}^{\\\\textrm{oc}}\\\\subseteq {\\\\textbf {Cov}}_{X}^{\\\\textrm{adm}}\\\\)</span>. Whether or not this inclusion is strict is a question initially asked by de Jong. Some partial answers have been given in the recents works of Achinger, Lara and Youcis in the finite or equal characteristic 0 cases. The present note shows that this inclusion can be strict when <i>k</i> is of mixed characteristic (0, <i>p</i>) and <i>p</i>-closed. As a consequence, the natural morphism of Noohi groups <span>\\\\(\\\\pi _1^{\\\\mathrm {dJ, \\\\, adm}}(\\\\mathcal {C}, \\\\overline{x})\\\\rightarrow \\\\pi _1^{\\\\mathrm {dJ, \\\\,oc}}(\\\\mathcal {C},\\\\overline{x}) \\\\)</span> is not an isomorphism in general.\\n</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01578-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01578-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 X 是一个局部有限类型的、在完全非拱顶域 k 上的 adic 空间,并表示 \({\textbf {Cov}}_{X}^{\textrm{oc}}\) (respect.\({/textbf{Cov}}_{X}^{/textrm{adm}}/))是 X 的 étale 覆盖的范畴,这些覆盖对于伯克维奇超收敛拓扑学(或者对于可容许拓扑学)来说是有限 étale 覆盖的局部不相交的联合。有一个自然包含 \({\textbf {Cov}}_{X}^{\textrm{oc}}}subseteq {\textbf {Cov}}_{X}^{\textrm{adm}}\).这个包含是否严格是德容最初提出的问题。Achinger, Lara 和 Youcis 最近的著作给出了有限或等特征 0 情况下的部分答案。本注释表明,当 k 为混合特征(0,p)且 p 封闭时,这种包含是严格的。因此,Noohi 群的自然变形(\pi _1^{\mathrm {dJ,\, adm}}(\mathcal {C}, \overline{x})\rightarrow \pi _1^{mathrm {dJ, \,oc}}(\mathcal {C},\overline{x}) \)在一般情况下不是同构的。
Comparison between admissible and de Jong coverings in mixed characteristic
Let X be an adic space locally of finite type over a complete non-archimedean field k, and denote \({\textbf {Cov}}_{X}^{\textrm{oc}}\) (resp. \({\textbf {Cov}}_{X}^{\textrm{adm}}\)) the category of étale coverings of X that are locally for the Berkovich overconvergent topology (resp. for the admissible topology) disjoint union of finite étale coverings. There is a natural inclusion \({\textbf {Cov}}_{X}^{\textrm{oc}}\subseteq {\textbf {Cov}}_{X}^{\textrm{adm}}\). Whether or not this inclusion is strict is a question initially asked by de Jong. Some partial answers have been given in the recents works of Achinger, Lara and Youcis in the finite or equal characteristic 0 cases. The present note shows that this inclusion can be strict when k is of mixed characteristic (0, p) and p-closed. As a consequence, the natural morphism of Noohi groups \(\pi _1^{\mathrm {dJ, \, adm}}(\mathcal {C}, \overline{x})\rightarrow \pi _1^{\mathrm {dJ, \,oc}}(\mathcal {C},\overline{x}) \) is not an isomorphism in general.
期刊介绍:
manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.